
Analysis Pipeline

© 2011 Carnegie

Mellon University

Streaming Flow Analysis

Dan Ruef - SEI

Agenda

Moving analyses from retroactive to real time

Stages of pipeline

Pipeline capabilities

Example configurations

Streaming analysis coding issues

2

Streaming analysis coding issues

SiLK

SiLK was built to effectively query a repository

• Everything is retroactive

Issues with time groupings

• Easy to analyze each hour

• Difficult to investigate every 1 hour period

3

• Difficult to investigate every 1 hour period

Need many SiLK commands to isolate a value

Closest to real time is batched jobs

Pipeline gets a copy of flow files on their way to the

repository

• Does not interrupt path to repository

Pipeline

Pipeline is a single program, coded in C

• Configurable filters,

evaluations, and alerting

• Parameters are read

from a config file at startup

• Any number of filters and

4

• Any number of filters and

evaluations

Analyzes flow records en route to repository

• Processes data one flow file at a time

• Builds and keeps state between the files

Mechanics of Flow Collection

S

ACK creates a flow table entry: ~0s

Total time: ~0s

YAF to rwflowpack: ~0srwflowpack to rwsender: <120srwsender to rwreceiver: <45srwreceiver to rwflowappend: <30s

Total time: 120sTotal time: 165sTotal time: 195s

5

YAF

rwflowpack

F

A

rwreceiver

rwsender

rwflowappend

SiLK

Data

store

Pipeline flow

copy directory

Uses of Pipeline

Generate Alerts

• Scan data for watchlist hits

• Detect anomalous traffic
based on thresholds

• Identify malicious IP
addresses or notable ports

Situational Awareness

• Identify servers

• Discover errant network
configurations

• Periodically report network
statistics

6

Combination of Both

• Identify flows containing any number of the identifiable
characteristics detected in above analyses

Capabilities

Finite State Beacon Detection

Ratio Calculation (Used for Exfil Detection)

Sensor Outage Detection

IPv6 Tunnel Detection

Passive FTP Detection

7

Passive FTP Detection

Watchlists

Flow counts

Flow field based capabilities (can be combined)

• Sum or Average of the field value (bytes, packets, durations,

etc)

• Proportion of flows with a given field value (TCP, Web, etc)

Independent Pieces of Pipeline

Independent yet connected pieces

• Allows them to be interchangeable and customizable

8

Independent Pieces of Pipeline

Independent yet connected pieces

• Allows them to be interchangeable and customizable

Filters

• Collect notable/desirable traffic for further analysis

Internal Filters (Stateless Updaters)

9

Internal Filters (Stateless Updaters)

• Make lists of values from flows deemed important

Evaluations

• Independent state for each check comprising an eval

• Output Lists

• Bulk of time and memory costs

Connecting Filters -> Evals -> Alerts

10

(Very) Simple Analysis*

1) Only worry about tcp traffic

2) Identify IP addresses that send more than 1MB in

5 minutes

11

*This analysis isn’t all that helpful, just a simple illustration

Processing Diagram

12

Simple Analysis and Diagram

Filter (process all flows before next step)

• Protocol == 6 (TCP)

Transcoder (process all flows before next step)

• Remove any state older than the 5 minutes we care

about

13

• Find the state bin for this flow’s SIP

• Add in the byte value from this flow

Thresholder

• Check to see if ANY of the states’ bytes total is greater

than 1,000,000 (1MB)

• If so, pass SIP, last flow, and byte total to output / alert

Stage Independence

Changing the filter to UDP doesn’t affect state

aggregation.

Changing the threshold doesn’t affect the filter.

14

Changing the counting of bytes to packets doesn’t

affect the thresholder.

Complex Analysis to Build Up To

Identify web servers*

• Sends more than 20,000 bytes in 10 minutes

• Talks to more than 15 different DIPs in 15 minutes

Perform secondary analysis on those that connect to

15

Perform secondary analysis on those that connect to

those identified as web servers, checking if any of

those are on a watchlist.

*Definition of web server for this example only. Not official SEI quantitative
definition of web server.

Architecture Reminder

16

SiLK Flow Record

17

Field Lists

Fields from that list can be combined in the

configuration file to build tuples.

This allows for more customization and an easy way

to represent tuples.

18

to represent tuples.

Field lists don’t always make sense:

• “SUM BYTES” is good

• “SUM SPORT BYTES” is not

Order of fields does not matter; sorted internally

Flexible Fields

Filter on either SIP or DIP

• Use ANY IP keywords instead of SIP or DIP

• i.e. ANY IP == 1.2.3.4

Filter on {SIP, DIP} and {DIP, SIP} from a list

• Tries {SIP, DIP}, then {DIP, SIP}

19

• Tries {SIP, DIP}, then {DIP, SIP}

• i.e. ANY IP PAIR IN_LIST listOfIPPairs

Same options for ports

• ANY PORT > 1024

• ANY PORT PAIR IN_LIST listOfPortPairs

Filters

Stateless and need no concept of time

• Very low cost on time and memory

Role is to send only pertinent flows to evals

Stores list of flows that pass filter

• Deletes them after evaluations and alerts finish

20

• Deletes them after evaluations and alerts finish

Tries to mimic features of rwFilter for ease of use

Examples

By port

• Web

• FTP

By protocol

• TCP

21

• TCP

• UDP

Compare to white or black list

Incoming vs. Outgoing traffic

Any combination ‘anded’ together

Filters

Operators for any field in flow record

• <, <=, >, >=, ==, !=, IN_LIST, NOT_IN_LIST

IN_LIST and NOT_IN_LIST work on three types of
lists

• User defined comma-separated lists, e.g. [1, 2, 3, 4, 5…]

22

• User defined comma-separated lists, e.g. [1, 2, 3, 4, 5…]

• Static Lists (ipset files)

• Dynamic Lists (Outputs and Internal Filters)

Different fields in flows can be compared

• sport < dport

Filters and Lists

User specified comma separated lists

• SPORT IN_LIST [21, 80, 443]

• Values in lists must be of the proper format for field

Static lists – ipset files

• SIP IN_LIST “myBadIps.set”

23

• SIP IN_LIST “myBadIps.set”

• Update list by overwriting file outside of pipeline

• Pipeline will detect the change in file and reload it

Dynamic lists

• Populated by evaluation output and internal filters

• Details to follow

More on Filters

Filters see all flows and run independently

• Made up of any number of anded comparisons

• Comparisons use operators discussed previously

Filters “own” each flow that passes them

Evals reference flows from their associated filter

24

Evals reference flows from their associated filter

Filters free all flows after evaluations are finished

• Freeing of flows passing multiple filters handled safely

Internal Filters – Stateless Updaters

A way to “write down” values from notable flows

Provides instant updating for lists based on the flows

in the current flow file

25

Updates lists WHILE filtering a flow file

Evaluations update lists AFTER a file is processed

Allows for flows in the same file to affect each other

A Reason for Internal Filters

IPv6 Tunnel Detection

• Keep track of all SIPs from flows

going to the IPv6 server

• Alert on all traffic to or from the

SIPs on protocol 41

Initial connection and traffic can

26

Initial connection and traffic can

be in same flow file

Avoids overhead of an additional

eval to find connections

Internal Filters

Run the flow through the specified named filter

If it passes, pull certain field values out and add them

to a named list

• Can be repeated for different field values and lists

Config Example:

27

Config Example:

INTERNAL_FILTER example

FILTER favoriteFilter

SIP DIP listOfIpPairs

SPORT DPORT listOfPortPairs

END INTERNAL_FILTER

Pipeline Architecture

28

Evaluations

The decision and analysis stage of pipeline

Majority of time and memory costs

Can have time restrictions:

29

Can have time restrictions:

• Alert if “this” happens in any

5 minute period

Evaluations and Checks

Evaluations are made up of checks

• A check is where thresholds are specified

• Each check can be limited by its own time window

— Analyzes every time period, not mutually exclusive blocks

• Examples

30

— Sum of Packets > 1000 in 10 minutes

— Number of Unique Source IP Addresses > 10 in an hour

— Total Flow Count > 10000 in 1 minute

• If all checks meet threshold, the evaluation alerts

Components of a Check

Transcoder

• Pulls desired value(s) from filtered flows

• Bins the state from this flow file

• Combines state from this file with overall state values

Thresholder

• Compares overall state values with:

31

• User-defined thresholds

• Specialized conditions and thresholds

• Passes successes onto the Output List

Output List

• Builds and manages list of successes

• Adds successes to dynamic lists if configured to do so

• Constructs alerts

Components of a Check

32

Building State for a Check

Each check is independent

• Pulls specific field value from flow

— Ignores the rest of the flow record

• Aggregates that value with others from this file

• Timestamps the new aggregate and adds it to the list

33

• Updates state

— Removes any aggregates that have timed out

— Adds in the new aggregate from the current file

• Compares new state value against threshold

State Grouping

A check’s state can be calculated for each unique

value of the specified flow field

• We call it “for each”

Example: FOREACH SIP

• A different state value is stored and aggregated for each

34

• A different state value is stored and aggregated for each

SIP found in the flow records

• Helps identify notable SIPs rather than saying that there

might be an infected SIP in the network

Any group of fields can be used with FOREACH

• More memory is needed as more fields are added

FOREACH SIP – Sum Bytes

IP Bytes

1.1.1.1 10

2.2.2.2 50

1.1.1.1 10

2.2.2.2 50 2.2.2.2 75

IP Bytes

35

3.3.3.3 20 3.3.3.3 20

2.2.2.2 25

3.3.3.3 100

3.3.3.3 120

Still with me?

36

Pipeline Architecture

37

Simplest Evaluation

“Everything Passes”

• Alert on all flows that pass the associated filter

• Does not need to keep state

• Used when the filter identifies flows

38

A watchlist is the prime use of this evaluation type

• Filter:

• ANY IP IN_LIST “watchlist.set”

• Evaluation:

• EVERYTHING PASSES

Threshold Checks

This is meant to replace the

next 2 slides

39

Threshold Checks

Total Count – Count number of flows received

• Ex: Count > 10000

Field Sum – Sum of the value of specified field

• Must provide the field name

• Ex: Sum PACKETS >= 500

40

• Ex: Sum PACKETS >= 500

Field Average – Average of the value of field

• Must provide the field name

• Ex: Average BYTES < 100

More Threshold Checks

Unique Field Count - # Unique field values seen

• Need to declare field name

• Distinct DIP > 10

— Success if more than 10 unique DIPs are seen

41

Proportion – How often a field value is seen

• Need to declare field name

• Need to declare field value

• Ex: Proportion PROTOCOL 6 > 75 PERCENT

Beacon Detection

Uses finite state beacon detection

• Outputs 4-tuple {SIP, DIP, DPORT, PROTOCOL}

Configurable parameters:

• Minimum number of beacons

42

• Minimum number of beacons

• Minimum time window between beacons

• % variance on either side of established frequency

Ratio Calculation

Based on ratio of outbound to inbound flows

• Produces {SIP, DIP} pairs.

• Threshold of outgoing to incoming is configurable

Options for determing direction

• Class/Type from flow {in, inweb} v.s. {out, outweb}

43

• Class/Type from flow {in, inweb} v.s. {out, outweb}

• Based on a beacon list. If {SIP, DIP} in list, outgoing

•Primarily used as part of analysis to detect exfil

Sensor Outage

Presently the only file evaluation

Detects sensor outages

• Configuration contains list of

sensors to inspect

• Reads sensor.conf (SiLK) to

change names into IDs

44

change names into IDs

Alerts if a flow file from a listed

sensor does not arrive in the

specified time window

IPv6 Tunneling

Use internal filtering

• Look for initial connection: DIP == ipv6 server addr

• Place that SIP in “IPv6 connectors” internal list

Second filter:

• SIP IN_LIST IPv6 connectors

45

• SIP IN_LIST IPv6 connectors

• Proto == 41

Evaluation:

• Everything Passes

High Port Check

Goal is to identify passive traffic (i.e. FTP)

• After port 21 traffic, transfers are on high ports

Uses an internal filter to look for flows with sport and

dport > 1024

• Puts SIP and DIP into a list

46

• Puts SIP and DIP into a list

If a port 21 connection is seen between the listed SIP

and DIP, alert

• The port 21 flow will arrive after all of the high port flows

as it stays open the entire time

Alerting and Outputs

An evaluation that triggers an output

• Outputs contain:

— The last flow record that affected this state

— The FOREACH value

— Data values that caused the evaluation to alert

— Timestamp when pipeline triggered

47

— Timestamp when pipeline triggered

• They are placed in a list sorted by timestamp

• Entries can time out based on OUTPUT_TIMEOUT

Alerts

Alerts contain all information stored in an output

Configuration options

• Restricting how often they are sent

• e.g. Alert at most once every hour

• How much to alert

48

How much to alert

• Everything in the list of outputs that

hasn’t timed out

• All of the outputs with timestamps

newer than the last alert

• Only the outputs generated from

the current flow file

Alerting Library

A separate program developed by SEI

Handles transmission of alerts to subscribers

Converts to the requested format of subscriber

• arcSight CEF

• Syslog

49

• Syslog

• JSON text format

Dynamic Lists

Values from outputs can be put into lists

• Lists can be referenced by filters using (NOT_)IN_LIST

• Lists can be bundled into an alert periodically

Output list values are subsets of the FOREACH field

Multiple output lists can be

50

Multiple output lists can be

created by a single eval

A timeout can be set for

the entire group of lists

Revisit Complex Analysis

Identify web servers*

• Sends more than 20,000 bytes in 10 minutes

• Talks to more than 15 different DIPs in 15 minutes

Perform secondary analysis on those that connect to

51

Perform secondary analysis on those that connect to

those identified as web servers, checking if any of

those are on a watchlist.

*Definition of web server for this example only. Not official SEI quantitative
definition of web server.

First Stage of Complex Analysis

Filter 1

• Accept all flows for processing

Evaluation webServers

• FOREACH SIP

• SUM BYTES > 20000

• TIME_WINDOW 10 MINUTES

• DISTINCT DIP > 15

• TIME_WINDOW 15 MINUTES

Filter 2

• SIP IN_LIST listOfWebServers

• DIP IN_LIST “watchlist.set”

Evaluation 2

• EVERYTHING_PASSES

52

• TIME_WINDOW 15 MINUTES

• OUTPUT_TIMEOUT 1 DAY

• OUTPUT_LIST SIP listOfWebServers

Configurable Evaluation Features

Id

• A string used to uniquely identify an evaluation

• e.g. outgoing_watchlist_number_1

Eval type

• Another string used to group evaluations

53

• Another string used to group evaluations

• e.g. watchlist

Severity

• A severity value to be part of an alert triggered by

pipeline

— Severity does not affect processing, just passed from config

to alert

Recap

Pipeline’s independent features

• Filters

• Internal Filters (Stateless Updators)

• Evaluations

• Named lists (ipsets and Dynamic Lists from evals)

54

Evaluations get flow files from attached filter

Evaluations compare state to thresholds and alert

Future Work

Allowing multiple filters to feed an evaluation

Allowing multiple evals to feed one Dynamic List

Stronger framework to output Dynamic Lists

• Ability to send out SiLK ipsets

Seeding Dynamic Lists of IP addresses with an ipset

55

Seeding Dynamic Lists of IP addresses with an ipset

Questions Contact

You can get the CERT NetSA tools from:

http://tools.netsa.cert.org

Questions on Pipeline or any of our tools:

netsa-help@cert.org

56

netsa-help@cert.org

Dan Ruef

druef@cert.org

	Analysis_Pipeline-part_1
	Analysis_Pipeline-part_2

