
the evolution of
collective intelligence

claimid.com/wesyoung
Thursday, August 11, 2011

know thy audience

Thursday, August 11, 2011

know thy presenter.

Thursday, August 11, 2011

REN-What?
• The REN-ISAC mission is to aid and promote cyber

security operational protection and response within
the higher education and research (R&E)
communities. The mission is conducted within the
context of a private community of trusted
representatives at member institutions, and in
service to the R&E community at-large. REN-ISAC
serves as the R&E trusted partner for served
networks, the formal ISAC community, and in other
commercial, governmental, and private security
information sharing relationships.

Thursday, August 11, 2011

The Basics.
• we send 10-12k notifications to all of north

american .edu per month, we act like a CSIRT

• we provide community resources that allow our
membership to communicate threat / experience data
in a “safe space”

• create trusted interfaces between our membership and
the rest of the world (leo, private industry, public
resources, etc)

• we also build tools, participate in standards discussions
and drink beer.

Thursday, August 11, 2011

with-in the REN-ISAC
membership

• 325+ Institutions (500+ ‘distinct’ campuses, state-systems, etc)

• 825+ individual members (role is firefighting with enterprise responsibility)

• Mostly North America (few scattered throughout other english speaking countries)

• lots of ipv4 allocations

• lots and lots of ipv6 allocations in production

• big bandwidth

• typically a few hundred meg to multi-gig pipes

• internet2 backbone -- 40-100 gig

• lots of different cultures, perceptions, ideals

• lots of diverse students (laptops coming and going from .kr, .cn, .us, .eu, .etc)

• firewalls... ha. yea right. Not enough tequila for that rat-hole.

• Everyone is their own unique snowflake

• we’re solving the information sharing problem within this context.

Thursday, August 11, 2011

to the point

Thursday, August 11, 2011

the
Security Event System

Thursday, August 11, 2011

some history
• August 2008

• Development began on v1 (courtesy of Internet2 and the DoJ)

• Feb 2009 - May 2010

• v1 Beta within RI community

• January 2010 (courtesy of our member fee’s)

• v2 prototype development started

• May 2010

• production v1 deployment to RI community

• August 2010

• v2 Beta2 deployment to select members of RI Community

• August 2011

• v2 Beta3 deployment to entire RI community

• October 2011

• v2 Production Deployment

• November 2011 (Courtesy of the NSF)

• v3 prototype development begins (more on that towards the end)

Thursday, August 11, 2011

SES v1 goals
• Mostly “event” standardization (IDMEF)

• Extending existing tools (RT, Prelude, etc...)

• Federation-al involvement

• Security Event Management

• Generating Intelligence Feeds (Block lists, etc)

• provide simple, false-positive proof correlation

• Lower the barriers to entry when it comes to data-
sharing

Thursday, August 11, 2011

Machine-to-Machine

Thursday, August 11, 2011

how v1 rolled out.
• “SES” has 10+ sites Sharing automated, machine generated data

between 50 and 20,000 data-points per day per site.

• (SSH|Telnet|FTP|VNC|Pushdo|Darknet) Scanners.

• Near realtime in most cases, from live sensors as well as honeypots

• Leveraging Snort, Nepenthes, syslogs, Custom Darknet scripts via
the current SES API (libprelude)

• We create a “correlated scanners” (multi-location) into a mitigation
feed for sites to pull down.

• We also have a web page users can manually enter malicious
domain-names, malware drop sites, botnet C&C into which produce
various other mitigation feeds (stuff they’ve manually investigated).

Thursday, August 11, 2011

Correlated Event Data
(prelude IDS)

• Open Source; Open Standards. 10 years of “IDS” intelligence experience.

• Commercially backed (they should be around for a while)

• Provides a standardized SQL based data-warehouse

• Handles the event API (securely with easy to use open TLS based tools, and in a
fast binary mode of operation)

• pre-written parsers for lots of different log formats ‘out of the box’

• Lots of easy to use client side API’s (perl, python, C++, Java, .. (wow does java
suck), etc...) for the automation of data in through customized correlation
platforms (eg: darknet data, pre-correlated data, honeypot data, etc...)

• Most scripts are 20-lines of code or less, easier to maintain, off-load heavy-lifting
to the API

• Provides a [python] correlation platform for realtime event correlation

• Where do the events go once they’ve been correlated?

Thursday, August 11, 2011

Thursday, August 11, 2011

tracking tickets.
• Handles ACL/UI/Basic workflow

• Has functionality to build out “federations” using ACL’s
and the “groups” model.

• Mature code base (10+ years)

• Large customer base

• Prioritize, index and transactional-ize security
conversations around correlated events

• Closest thing to your inbox (replace mailing list?)

• PGP friendly!

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Feeds

Thursday, August 11, 2011

Lessons Learned v1
• Database design to support high-volume at performance

• Database design, small, concise, and easily adapted

• Database design to support “schema-less” data

• http://bret.appspot.com/entry/how-friendfeed-uses-mysql

• http://labs.google.com/papers/bigtable.html

• Standards-based, but don’t tie to a single standard – make design decisions
that accommodate multiple data representation standards in a single database

• Learn from other’s successes and mistakes

• Community engagement for determining design priorities

• Feedback from a team of knowledgeable early adopters

• pilot pilot pilot with your community! they’ll be the ones using it!

Thursday, August 11, 2011

http://bret.appspot.com/entry/how-friendfeed-uses-mysql
http://bret.appspot.com/entry/how-friendfeed-uses-mysql
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html

Collective Intelligence
(v2)

• Locally correlated Events (typically malicious ip-infrastructure)

• Spamhaus DROP list (hijacked networks)

• Malwaredomains.com feed (malware hashes, malware domains, malware ip-infrastructure)

• Malwaredomainlist.com feed (malware urls, malware domains)

• DShield List(s) (scanning ip-infrastructure)

• Phishtank Data (phishing urls, phishing ip-infrastructure)

• Zeustracker data (binary urls, config urls, domains, ip-infrastructure)

• From each domain, you have massive potential intelligence from the name-servers
involved with each domain.

• Whitelists (domains, ip-infrastructure... dnswl.org)

• Passive domain lookup data (not necessarily malicious addresses, but a good reference to
have along side your intelligence).

• Locally discovered intel (potentially all of the above)

Thursday, August 11, 2011

where we stole the idea from
http://bret.appspot.com/entry/how-friendfeed-uses-mysql

• Our datastore stores schema-less bags of properties (e.g., JSON objects or
Python dictionaries). The only required property of stored entities is id, a 16-byte
UUID. The rest of the entity is opaque as far as the datastore is concerned. We
can change the "schema" simply by storing new properties.

• We index data in these entities by storing indexes in separate MySQL tables. If
we want to index three properties in each entity, we will have three MySQL
tables - one for each index. If we want to stop using an index, we stop writing to
that table from our code and, optionally, drop the table from MySQL. If we want
a new index, we make a new MySQL table for that index and run a process to
asynchronously populate the index without disrupting our live service.

• As a result, we end up having more tables than we had before, but adding and
removing indexes is easy. We have heavily optimized the process that populates
new indexes (which we call "The Cleaner") so that it fills new indexes rapidly
without disrupting the site. We can store new properties and index them in a
day's time rather than a week's time, and we don't need to swap MySQL masters
and slaves or do any other scary operational work to make it happen.

Thursday, August 11, 2011

http://bret.appspot.com/entry/how-friendfeed-uses-mysql
http://bret.appspot.com/entry/how-friendfeed-uses-mysql

schema-less data

• store anything and everything (xml, plain-text, binary blobs, etc).

• If you wanna add/remove something, just alter the table (no index
locking issues).

• structure what you can (json, xml, whateva), even if it’s a simple key-
pair. (hint: standards help document the data, but isn’t required, it’s a
good thing if you want anyone else to leverage your data, or send you
data).

• unstructured data integration (sometimes good intel is in e-mail form)

• everything has a uuid (derived by a sha1 based uuid of the ‘blob’ hash).

• known relationships to the blob are stored within the blob and
indexed for searching (eg: a uuid pointing at another uuid).

Thursday, August 11, 2011

ideals.
• Data Normalization (format, confidence, severity, etc).

• Largely diverse (and usually large) data-sets

• data is “living”, it’s only as fresh as your last record or trend. (as the insert()
completes, it’s already become stale, regardless if you’ve updated the “lastUpdated”
column).

• Even within similar data-sets, some intel may become stale more quickly than others
(scanners vs botnet C&C’s)

• ultimately data is from PEOPLE (eg: human beings). Whether it’s a sensor that was
programmed by someone with a bias towards something, or a forensics
investigation. We must interpret that data from their context to our context EVERY
TIME before we can make use of it.

• search vs feeds and distinguishing the difference (presentation layer)

• is there already something like this out in real-life?

• i can has API? (application integration, reaching an intelligence driven infrastructure)

Thursday, August 11, 2011

the basics
• Takes data from public and private sources, pre-processes it,

normalizes it down to your favorite standard (eg: IDMEF, IODEF,
ICSG, json keypairs, etc...) and stores in along side it’s counter
part data points.

• Malware metadata is stored along side suspicious networks data
(reads: re-use-a-ble)

• Malicious Domains data is stored along side phishing url data.

• The main intelligence stream warehouses everything in blob’s and
uses ‘cookie cutter’ style index partitions (eg: regular tables) to be
derived from the specific parts of the data worth using in
analytics/mitigation's.

• the web api (REST) works the same way

Thursday, August 11, 2011

parsing. is. hard.

• cif_feedparser

• everything (well, most things) are just
config mappings

• threading magic

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

free. as in beer.

Thursday, August 11, 2011

Project References
(standards stuff)

• RT::IODEF

• RT-IODEF: integrating IODEF into RT

• project: http://code.google.com/p/perl-rt-iodef/

• code: http://search.cpan.org/~saxjazman/RT-IODEF/

• XML::IODEF: Perl module for manipulating IODEF with Perl

• project: http://code.google.com/p/perl-xml-iodef/

• code: http://search.cpan.org/~saxjazman/XML-IODEF/

• XML-Malware: Perl extension for representing malware in XML

• project: http://code.google.com/p/perl-xml-malware/

• code: http://search.cpan.org/~saxjazman/XML-Malware/

• python-xml-malware: Python framework for representing malware in XML

• project: http://code.google.com/p/python-xml-malware/

• XML-IODEF-PhraudReport: extending XML::IODEF to use with Phishing Extensions

• project: http://code.google.com/p/xml-iodef-phraudreport/

• code: http://search.cpan.org/~saxjazman/XML-IODEF-PhraudReport/

• perl-arcsight-iodef: convert ArcSight XML to a standardized IODEF

• project: http://code.google.com/p/perl-arcsight-iodef/

Thursday, August 11, 2011

http://code.google.com/p/perl-rt-iodef/
http://code.google.com/p/perl-rt-iodef/
http://search.cpan.org/~saxjazman/RT-IODEF/
http://search.cpan.org/~saxjazman/RT-IODEF/
http://code.google.com/p/perl-xml-iodef/
http://code.google.com/p/perl-xml-iodef/
http://search.cpan.org/~saxjazman/XML-IODEF/
http://search.cpan.org/~saxjazman/XML-IODEF/
http://code.google.com/p/perl-xml-malware/
http://code.google.com/p/perl-xml-malware/
http://search.cpan.org/~saxjazman/XML-Malware/
http://search.cpan.org/~saxjazman/XML-Malware/
http://code.google.com/p/python-xml-malware/
http://code.google.com/p/python-xml-malware/
http://code.google.com/p/xml-iodef-phraudreport/
http://code.google.com/p/xml-iodef-phraudreport/
http://search.cpan.org/~saxjazman/XML-IODEF-PhraudReport/
http://search.cpan.org/~saxjazman/XML-IODEF-PhraudReport/

Project References
(and future work, v3)

• www.ren-isac.net/ses -- main project page

• http://code.google.com/p/collective-
intelligence-framework/

Thursday, August 11, 2011

http://www.ren-isac.net
http://www.ren-isac.net
http://code.google.com/p/collective-intelligence-framework/
http://code.google.com/p/collective-intelligence-framework/
http://code.google.com/p/collective-intelligence-framework/
http://code.google.com/p/collective-intelligence-framework/

