
Real World Security Scripting

Ed Aldridge (GOV) / Chris Sanders (CTR) / Jason Smith (CTR)

Statement A: Approved for Public Release. Distribution is unlimited (22 July 2011).

What is the SPAWAR NSOC?

• SPAWAR Network Security Operations Center (NSOC)

• Computer Network Defense Service Provider (CNDSP)

• Protect, Detect, Respond, and Sustain

• ~20 Intrusion/Incident Analysts

+ Cyber Threat Analysis Cell

+ Fusion Cell

+ Vulnerability Analysis and Auditing Team

+ More…

Who Are These Guys?

Chris Sanders

• Packet ninja

• Author of Practical Packet Analysis (No Starch
Press)

• CISSP, GCIA, GCIH, GREM

Fusion Team

SPAWAR NSOC

Jason Smith

• RegEx samurai

• Physicist by degree, computer security guy by
dumb luck

• GCIA, GCFA, LPIC• CISSP, GCIA, GCIH, GREM • GCIA, GCFA, LPIC

Ed Aldridge

• IDS Team Lead

• CISSP, GCIA, GCIH, GCFA, GSEC, RHCE

Objectives

Two Goals:

1.A better understanding of the importance of scripting in
analysis and how easy it is to get started with simple tasks

2.Share some really cool and useful scripts that we use 2.Share some really cool and useful scripts that we use
every day at SPAWAR

Common Reaction

You may end up in this situation…

CNDSP Operations – Day 1

• Raw PCAP Data

• SiLK Netflow Data

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 6

…..

That’s it.

Scripting is Important

• Simple scripting can yield big results

• The best way to get the results you need from the data
you have

• You won’t always have fancy commercial tools

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 7

• You won’t always have fancy commercial tools

• Help automate tasks or expand capabilities

• A skill that makes you more valuable to your organization

Automation and Capabilities

Automation

• Make repetitive tasks faster

• Typically low effort/high reward

Capabilities

• New views on old data

• Varying effort level and reward

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 8

• Easy way to make friends

• Great place to start

• Provide direct value towards
mission objectives

• Requires unique ideas

Snort Rule Updater

Problem:

• Takes an analyst 2 minutes per
sensor to update custom Snort
rules file

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 9

• Multiply task times 100 sensors
== 3 ½ hour task

Solution:

• Simple automation task in BASH

• Utilize SSH to update all Snorts sensors from one location

Snort Rule Updater (Workflow)

1. SCP custom rule file to sensor

2. Make backup of existing rule file

3. Replace old file with new file

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 10

4. Record changes to log file

5. Restart Snort

Code Disclaimer

• We are NOT programmers!

• Code samples in these slides are brief and incomplete

• Full scripts and code (with comments) are downloadable.
Links to come…

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 11

Links to come…

Snort Rule Updater (Variables)

sensors="192.168.1.1 192.168.1.2 192.168.1.3 "

rulepath=/etc/snort/rules

customrules=custom.rules

user=snortuser

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 12

user=snortuser

Snort Rule Updater (Error Checking)

if [! -f $customrules]; then

echo "### Error!"

echo "### In order to use this script a

file named $customrules must exist in the

directory the script was executed from!"

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 13

exit 0

fi

Snort Rule Updater (Backup)

for ip in $sensors

do

echo "## Connecting to $ip"

if ssh -t -q $user@$ip "exit“

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 14

then

echo "## Creating a backup of current rule

file...“

ssh -t -q $user@$ip "sudo cp

$rulepath/$customrules $rulepath/$customrules.bak

;exit"

Snort Rule Updater (Transfer and Logging)

echo -n "## Transferring new rules file to

sensor...“

scp -q $customrules $user@$ip:$rulepath

echo "## Creating log file of rule changes“

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 15

ssh -t -q $user@$ip "sudo diff

$rulepath/$customrules

$rulepath/$customrules.bak > \

/var/log/snortrules/snort.rule.update.$(date

+%m%d%y.%H%M%S) ;exit"

Snort Rule Updater (Restart Snort)

echo "## Restarting Snort“

ssh -t -q $user@$ip "sudo /etc/init.d/snortd

restart ;exit"

echo "## Rule update completed on $ip“

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 16

echo "## Rule update completed on $ip“

echo ""

fi

done

Snort Rule Updater (Results)

• Before Script – 3 ½ hours

• After Script – 5 Minutes

• End Result – Happy analysts

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 17

• Positive Side Effect- Analysts were more likely to update
and tweak Snort rules proactively

AutoSiLK

Problem

• Common “2nd Level” analysis netflow queries are repetitive and
time consuming.

• A dozen queries per day.

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 18

• ~1 Hour of Processing Time

Solution

• Automate queries on a schedule so

they are prepared for analysts at shift

start

• Simple Python script

AutoSiLK (Workflow)

1. Run multiple SiLK Queries

2. Write results to file

3. E-mail contents of file

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 19

AutoSiLK (Imports and Bash Function)

#! /usr/bin/env/python

import sys, os, subprocess, smtplib, time

def runBash(cmd):

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 20

def runBash(cmd):

p = subprocess.Popen(cmd, shell=True,

stdout=subprocess.PIPE)

out = p.stdout.read().strip()

return out

AutoSiLK (Variables)

sensors = [“s0", “s1", “s2", “s3", “s4", “s5",

“s6", “s7"]

startdate = runBash("date -d '-12 hour'

+%Y/%m/%d:%H")

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 21

+%Y/%m/%d:%H")

enddate = runBash("date +%Y/%m/%d:%H")

open('autosilk.data','w')

open('autosilk.data','a').write("Top Talkers

Report for Last 12 Hours.\n\n")

AutoSiLK (SiLK Queries)

for host in sensors:

silkqry1 = runBash("rwfilter --start-

date=%s --end-date=%s --protocol=1,6,17 --

sensor=%s --type=all --pass=stdout | rwstats -

-count=10 --fields=sip,$

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 22

silkqry2 = runBash("rwfilter --start-

date=%s --end-date=%s --protocol=1,6,17 --

sensor=%s --type=all --pass=stdout | rwstats -

-count=10 --fields=sip,$

silkqry3 = runBash("rwfilter --start-

date=%s --end-date=%s --protocol=1,6,17 --

sensor=%s --type=all --pass=stdout | rwstats -

-count=10 --fields=dip,$

AutoSiLK (Mailing Results 1)
open('autosilk.data','a').write("==========================

========================\n\n %s - Top Talking IP Pairs by

Number of Connections\n\n" % (h$

open('autosilk.data','a').write("%s \n\n" %

(silkqry1))

open('autosilk.data','a').write("------------------

--------------------------------\n\n %s - Top Utilized

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 23

--------------------------------\n\n %s - Top Utilized

Source Ports\n\n" % (host))

open('autosilk.data','a').write("%s \n\n" %

(silkqry2))

open('autosilk.data','a').write("------------------

--------------------------------\n\n %s - Top Utilized

Destination Ports\n\n" % (host))

open('autosilk.data','a').write("%s \n\n" %

(silkqry3))

AutoSiLK (Mailing Results 2)

efrom = "toptalkers@nsoc.med.osd.mil"

eto = ["chris.sanders.ctr@nsoc.med.osd.mil" ,

"jason.smith.ctr@nsoc.med.osd.mil"]

esubject = ('Top Talkers %s hour - %s hour' %

(startdate, enddate))

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 24

etext = open('autosilk.data','r').read()

emessage = ('From: %s\nTo: %s\nSubject:

%s\n%s\n' % (efrom, eto, esubject, etext))

s = smtplib.SMTP(‘smptserver.mil')

rCode = s.sendmail(efrom, eto, emessage)

s.quit()

AutoSiLK (Output)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 25

AutoSiLK (Results)

• Before Script – ~1 Hour

• After Script – Instant! Results waiting for you at shift start.

• End Result – Happy Analysts

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 26

• Positive Side Effect – More analysts became involved
with “second level analysis”. Additionally, servers were
taxed less.

Grabber

• Problem: Lots of available PCAP data,
but stored in 2 minute increment files
across many sensor locations (size
limitations).

• Solution: Build a BASH script to filter,

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 27

• Solution: Build a BASH script to filter,
collect, and compile PCAP files for
analysts.

Grabber (Workflow)

1. Launches client script from analyst workstation

2. Invokes script on sensor containing PCAP data

3. Server script filters through 2 minute increment PCAP
files

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 28

files

4. Files are merged together and SCP transferred back to
client

5. Client script cleans up temporary files

Grabber (Sensor Selection)

echo "Please select sensor in which you'd like to

download pcap from: "

echo "SITE1”

echo "SITE2"

read SERVERNAME

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 29

read SERVERNAME

if ["$SERVERNAME" = "SITE1"]; then

SERVERIP=$(echo "192.168.0.1")

fi

if ["$SERVERNAME" = "SITE2"]; then

SERVERIP=$(echo "192.168.0.2")

fi

Grabber (Client Sending Files to the Sensor)

scp /home/scriptagent/grabber-s-scriptagent.sh

scriptagent@$SERVERIP:/home/scriptagent/

ssh -t scriptagent@$SERVERIP "sudo mv

/home/scriptagent/grabber-s-scriptagent.sh

/data/ ; sudo /data/./grabber-s-scriptagent.sh

; sudo rm /data/grabber-s-scriptagent.sh ;

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 30

; sudo rm /data/grabber-s-scriptagent.sh ;

exit ; bash”

Grabber (Server Side Time Selection 1)

echo -e "Please enter the timespan you're

interested in:"

echo -e "past hour--- = 1"

echo -e "custom------ = 6"

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 31

read timeinput

Grabber (Server Side Time Selection 2)

if [$timeinput = 1]; then

oldyear=$(date -d "-1 hour" +%y)

oldmonth=$(date -d "-1 hour" +%m)

oldday=$(date -d "-1 hour" +%d)

oldhour=$(date -d "-1 hour" +%H)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 32

oldhour=$(date -d "-1 hour" +%H)

oldminute=$(date -d "-1 hour" +%M)

newminute=$(date +%M)

newhour=$(date +%H)

newday=$(date +%d)

newmonth=$(date +%m)

newyear=$(date +%y)

fi

Grabber (Custom Time Selection 1)

if [$timeinput = 6]; then

echo "Please enter time span (YYMMDDhhmm

YYMMDDhhmm):"

read endtime starttime

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 33

if [${#endtime} != 10] || [${#starttime} !=

10]; then

echo "Wrong date format for the start or end

time, rerun."

exit

Grabber (Custom Time Selection 2)

else

oldyear=$(echo $starttime | cut -c1,2)

oldmonth=$(echo $endtime | cut -c3,4)

oldday=$(echo $endtime | cut -c5,6)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 34

oldhour=$(echo $endtime | cut -c7,8)

oldminute=$(echo $endtime | cut -c9,10)

<code snipped>

fi

fi

Grabber (Multiple Simultaneous Users 1)

time2=$(echo

$oldyear$oldmonth$oldday$oldhour$oldminute)

time1=$(echo

$newyear$newmonth$newday$newhour$newminute)

echo -n "Enter a filename for your results

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 35

echo -n "Enter a filename for your results

(name-it-something-you-will-recognize.pcap)

and press [ENTER]: "

read fname

echo -n "Enter your search string in tcpdump

format, i.e. host aaa.bbb.ccc.ddd or tcp port

80 and then press [ENTER]: "

read qstr

Grabber (Multiple Simultaneous Users 2)

echo 1

uniqident=$(date +%s)

echo $uniqident

sudo mkdir /tmp/$uniqident/

echo 2

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 36

echo 2

oldtime=$(date -d "$oldyear-$oldmonth-$oldday

$oldhour:$oldminute:01" +%s)

newtime=$(date -d "$newyear-$newmonth-$newday

$newhour:$newminute:01" +%s)

difference=$(((($newtime - $oldtime) / 60) + 2

))

thedate=$(date -d "$newyear-$newmonth-$newday

$newhour:$newminute")

Grabber (Listing PCAP to be Searched 1)

minmin=00

while [$minmin -lt $difference]; do

minute=$(date --date="$thedate - $minmin

minutes" +%M)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 37

ahour=$(date --date="$thedate - $minmin

minutes" +%H)

month=$(date --date="$thedate - $minmin

minutes" +%m)

day=$(date --date="$thedate - $minmin minutes"

+%d)

Grabber (Listing PCAP to be Searched 2)

rem=$((10#$minute % 2))

if [$rem != 0 -a $minute -lt 58]

then

minute=$((10#$minute + 1))

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 38

minute=$((10#$minute + 1))

if [$minute -lt 10]; then

minute=$(echo 0$minute)

fi

fi

Grabber (Listing PCAP to be Searched 3)

if [$minute = 59]

then

minute=$(echo "00")

fi

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 39

echo "/data/pcap/NSOC-2011-$month-$day-

$ahour:$minute:01" >>

/tmp/$uniqident/file.list.temp

tac /tmp/$uniqident/file.list.temp >

/tmp/$uniqident/file.list

let minmin=minmin+2

done

Grabber (Filter the PCAP)

for file in $(< /tmp/$uniqident/file.list)

do

tstamp=`date +%s`

sudo /usr/sbin/tcpdump -nnr $file $qstr -w

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 40

sudo /usr/sbin/tcpdump -nnr $file $qstr -w

/tmp/$uniqident/scriptagent.$tstamp.$iteration

echo "$iteration"

iteration=$(($iteration+1))

done

echo 6

Grabber (Merge Results)

sudo /usr/sbin/mergecap -w /data/working-

$fname /tmp/$uniqident/scriptagent.*

echo working-$fname > /data/temp.v

sudo chmod 755 /data/temp.v

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 41

echo 7

Grabber (Finishing the Transfer)

scp scriptagent@$SERVERIP:/data/temp.v

/home/scriptagent/

pcapfile=$(cat /home/scriptagent/temp.v)

scp scriptagent@$SERVERIP:/data/$pcapfile

/home/scriptagent/

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 42

/home/scriptagent/

echo "Your file is located at $pcapfile"

rm /home/scriptagent/temp.v

Grabber (Results)

• Prior Method: ~30 minutes

• With Script: < 2 minutes

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 43

• This process occurs dozens of times every day!

• Bonus Side Effect: Analysts became more thorough and
started always looking at PCAP when available

Cargo Drop

Problem:

• Higher level analysis involving PCAP files often required packet
payloads without header data

• Used often for manual stream reassembly, entropy analysis, etc.

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 44

• Used often for manual stream reassembly, entropy analysis, etc.

*http://www.packetstan.com/2010/11/packet-payloads-encryption-and-bacon.html

Solution:

• Josh Wright’s article* details using

Scapy for this

• A simple Python script automates

the process

Cargo Drop (Workflow)

1.Identify PCAP file through input argument

2.Use Scapy to extract packet payloads

3.Use Strings to purge binary data (optional)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 45

4.Save output to a file

Cargo Drop (Imports and BASH Function)

#! /usr/bin/env/python

import sys, os, subprocess

from scapy.all import *

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 46

def runBash(cmd):

p = subprocess.Popen(cmd, shell=True,

stdout=subprocess.PIPE)

out = p.stdout.read().strip()

return out

Cargo Drop (Get Input File and Variables)

if len(sys.argv) < 2:

print "Usage: ./cargodrop [input pcap file]

[output text file]"

sys.exit(1)

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 47

Assign variable names for input and output

files

infile = sys.argv[1]

outfile = sys.argv[2]

Cargo Drop (Extract Payload with Scapy)

fp = open("stage1","wb")

def handler(packet):

fp.write(str(packet.payload.payload.payload))

sniff(offline=infile,prn=handler,filter="tcp port

80")

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 48

80")

if os.path.isfile("stage1"):

print "## Stage 1: Payload successfully extracted!"

else:

print "!! Stage 1: Payload extraction failed!"

sys.exit(1)

Cargo Drop (Purge Binary Data)

print "## Stage 2: Purging binary data..."

runBash("strings stage1 > %s" % (outfile))

if os.path.isfile(outfile):

print "## Stage 2: Binary data successfully

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 49

print "## Stage 2: Binary data successfully

purged!"

else:

print "!! Stage 2: Binary data purge failed!"

runBash("rm -rf stage1")

Cargo Drop (Results)

• Before Script – No Capability

• After Script – Capability Achieved

• End Result – Happy Analysts

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 50

• Positive Side Effect - Several more tools were written
that leverage Cargo Drop

Malfind

Problem:

• Analysts needed the capability to compare our traffic against
known malicious domains and IP addresses.

Solution:

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 51

Solution:

• A mix of simple scripts that allow for automated intelligence
gathering and malicious activity detection.

Malfind (Workflow)

1. Retrieve IP/Domain lists from open source intelligence
sites (MalwareDomainList, ZeusTracker, etc)

2. Scan SiLK data for IP matches from lists

3. Scan PCAP data for domain matches from lists

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 52

3. Scan PCAP data for domain matches from lists

4. Send matches as e-mail results for further investigation

Malfind (Retrieve and Format Intel [Simple])

curl

http://www.malwaredomainlist.com/hostslist

/hosts.txt >

/home/scriptagent/malfind/mdlhosts.content

cat

/home/scriptagent/malfind/mdlhostfile.cont

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 53

/home/scriptagent/malfind/mdlhostfile.cont

ent | sed 1,6d | awk '{print $2}' >

mdlhostfile.hosts

Malfind (Expanded Intel Gathering 1)

testpage=$(curl -s

http://www.malwaredomainlist.com/hostslist/ip.tx

t | grep "href")

LENtestpage=$(echo ${#testpage})

echo $LENtestpage

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 54

if [$LENtestpage -gt 0]; then

echo "Malfind could not find

\"http://www.malwaredomainlist.com/hostslist/ip.

txt\" or it has changed and is not reporting."

else

Malfind (Expanded Intel Gathering 1)

else

curl

http://www.malwaredomainlist.com/hostslist/ip.tx

t > /home/scriptagent/malfind/mdlhosts.content

sed '/^$/d' mdlhosts.content >

mdlhosts.content.temp

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 55

mdlhosts.content.temp

mv mdlhosts.content.temp mdlhosts.content

fi

dos2unix /home/scriptagent/malfind/mdlhosts.content

Malfind (Checking SiLK 1)

timeold=$(date -d "-6 hour" +20%y/%m/%d:%H)

timenew=$(date +20%y/%m/%d:%H)

/usr/local/bin/rwfilter --start-date=$timeold --end-

date=$timenew --data-rootdir=/data/flow –not-

saddress=127.0.0.1 --type=all --pass=stdout |

/usr/local/bin/rwcut –fields=1 | sed s/.$// |tr -

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 56

/usr/local/bin/rwcut –fields=1 | sed s/.$// |tr -

d ' '|sed 1d |uniq | sort -u >

/home/scriptagent/malfind/silk.hosts.s

/usr/local/bin/rwfilter --start-date=$timeold --end-

date=$timenew --data-rootdir=/data/flow –not-

saddress=127.0.0.1 --type=all --pass=stdout |

/usr/local/bin/rwcut –fields=2 | sed s/.$// |tr -

d ' '|sed 1d |uniq | sort -u >

/home/scriptagent/malfind/silk.hosts.d

Malfind (Checking SiLK 2)

mals=$(grep -xFf

/home/scriptagent/malfind/mdlhosts.content

/home/scriptagent/malfind/silk.hosts.s

|sort -u)

mald=$(grep -xFf

/home/scriptagent/malfind/mdlhosts.content

/home/scriptagent/malfind/silk.hosts.d

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 57

/home/scriptagent/malfind/silk.hosts.d

|sort -u)

LENmals=$(echo ${#mals})

LENmald=$(echo ${#mald})

Malfind (Checking SiLK 3)

if [$LENmals != 0 -o $LENmald != 0]; then

echo "#################################"

>>/home/scriptagent/malfind/alertmail.txt

echo "# malwaredomainlist.com results #"

>>/home/scriptagent/malfind/alertmail.txt

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 58

echo

"#################################">>/home/scrip

tagent/malfind/alertmail.txt

fi

Malfind (Checking SiLK 4)

if [$LENmals != 0]; then

echo "$mals"

>>/home/scriptagent/malfind/alertmail.txt

echo " "

>>/home/scriptagent/malfind/alertmail.txt

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 59

fi

if [$LENmald != 0]; then

echo "$mald"

>>/home/scriptagent/malfind/alertmail.txt

echo " "

>>/home/scriptagent/malfind/alertmail.txt

fi

Malfind (Exclusion Lists 1)

grep -xFf

/home/scriptagent/malfind/custom/exclusion

.list

/home/scriptagent/malfind/silk.hosts.s

|sort -u >

/home/scriptagent/malfind/fexempt.list ;

cat /home/scriptagent/malfind/fexempt.list

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 60

cat /home/scriptagent/malfind/fexempt.list

/home/scriptagent/malfind/silk.hosts.s |

sort | uniq -u >

/home/scriptagent/malfind/tempsilk.list ;

mv /home/scriptagent/malfind/tempsilk.list

/home/scriptagent/malfind/silk.hosts.s

Malfind (Exclusion Lists 2)

grep -xFf

/home/scriptagent/malfind/custom/exclusion

.list

/home/scriptagent/malfind/silk.hosts.d

|sort -u >

/home/scriptagent/malfind/fexempt.list ;

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 61

cat /home/scriptagent/malfind/fexempt.list

/home/scriptagent/malfind/silk.hosts.d |

sort | uniq -u >

/home/scriptagent/malfind/tempsilk.list ;

mv /home/scriptagent/malfind/tempsilk.list

/home/scriptagent/malfind/silk.hosts.d

Malfind (Rundown 1)

thedate=$(date)

minmin=00

while [$minmin -lt 360]; do

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 62

minute=$(date --date="$thedate - $minmin

minutes" +%M)

ahour=$(date --date="$thedate - $minmin

minutes" +%H)

month=$(date --date="$thedate - $minmin

minutes" +%m)

day=$(date --date="$thedate - $minmin minutes"

+%d)

Malfind (Rundown 2)

rem=$((10#$minute % 2))

if [$rem != 0 -a $minute -lt 58]

then

minute=$((10#$minute + 1))

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 63

if [$minute -lt 10]; then

minute=$(echo 0$minute)

fi

fi

Malfind (Rundown 3)

let minmin=minmin+2

done

dos2unix malstr.$1.raw

mac2unix malstr.$1.raw

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 64

cat malstr.$1.raw | sed ':a;N;$!ba;s/\n//g' >

malstr.$1.new

perl malstr.pl $1

date

Malfind (Rundown 4)

if [$minute = 59]

then

minute=$(echo "00")

fi

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 65

sudo /usr/sbin/tcpdump -qnns 0 -A -r

/data/pcap/NSOC-2011-$month-$day-

$ahour\:$minute\:01 'tcp port 80' | grep -

B 10 "Host: " >> malstr.$1.raw

let minmin=minmin+2

done

Malfind (Malstr.pl 1)

open(MYINPUTFILE1, "<malstr.$ARGV[$1].new");

open(MYOUTPUTFILE1, ">$ARGV[$1].malstr");

while(<MYINPUTFILE1>)

{

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 66

@line1 = $_ =~ /(\d{2}\:\d{2}\:\d{2}\.\d{6}) IP

(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\.\d{1,5} >

(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\.\d{1,5}.{5,

700}[^](Host: .{1,60})\-\-/g;

$linecount = ($#line1 + 1);

Malfind (Malstr.pl 2)

for ($i = 0; $i <= $linecount; $i = $i + 4)

{

for $time (@line1[$i])

{

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 67

for $sip (@line1[$i + 1])

{

for $dip (@line1[$i + 2])

{

for $host (@line1[$i + 3])

Malfind (Malstr.pl 3)

{

print MYOUTPUTFILE1 "$time - host $sip and host $dip

- $host \n";

}}}}}

}

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 68

}

close(MYINPUTFILE1);

close(MYOUTPUTFILE1);

Malfind (Formatting E-Mail Results 1)

echo "Referencing MalwareDomainList.com domains..."

baddie=$(grep -Ff

/home/scriptagent/malfind/mdlhostfile.hosts

/home/scriptagent/malfind/$1.malstr |sort -u)

LENbad=$(echo ${#baddie})

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 69

if [$LENbad != 0]; then

echo

"##

##############"

>>/home/scriptagent/malfind/alertmail.txt

echo "# malwaredomainlist domain results -

investigate immediately # $2-($1)"

>>/home/scriptagent/malfind/alertmail.txt

Malfind (Formatting E-Mail Results 2)

echo

"##

##############"

>>/home/scriptagent/malfind/alertmail.txt

echo "$baddie - Investigate Immediately"

>>/home/scriptagent/malfind/alertmail.txt

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 70

#mail -r Malfind -s "$time Megabad alert! -

$baddie" jasonasmith.ia@gmail.com <

/home/scriptagent/malfind/alertmail.txt

echo " "

>>/home/scriptagent/malfind/alertmail.txt

fi

Malfind (Handling Multiple Sensors 1)

date

time=$(date +%d/%m/%y-%H:%M)

echo "** The following results are potential

blacklist matches in our SiLK records **"

>/home/scriptagent/malfind/alertmail.txt

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 71

echo " " >>/home/scriptagent/malfind/alertmail.txt

/home/scriptagent/malfind/./malfind-silk

echo " " >>/home/scriptagent/malfind/alertmail.txt

echo

"__

_______________________________"

>>/home/scriptagent/malfind/alertmail.txt

Malfind (Handling Multiple Sensors 2)

echo "** The following results are potential blacklist

domain matches in our PCAP data **"

>>/home/scriptagent/malfind/alertmail.txt

/home/scriptagent/malfind/./malfind-c-mailer

192.168.0.1 SITE1&

/home/scriptagent/malfind/./malfind-c-mailer

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 72

/home/scriptagent/malfind/./malfind-c-mailer

192.168.0.2 SITE2&

wait

mail -s "Malfind Alerts $time"

jason.smith.ctr@nsoc.med.osd.mil,chris.sanders.ctr@

nsoc.med.osd.mil -- -f Malfind <

/home/scriptagent/malfind/alertmail.txt

rm /home/scriptagent/malfind/custom/threat.dot.list

rm /home/scriptagent/malfind/custom/threat.space.list

Malfind (Results)

• Before Script – No Open Source Intel Based Detection
Capability

• After Script – Capability Achieved

• End Result – A significant number of new CAT7 incidents

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 73

• End Result – A significant number of new CAT7 incidents
were found

• Positive Side Effect – Site admins were pleased our analysts
were outperforming their desktop antivirus

Final Organizational Result

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 74

Source Code

All source code available for download at:

https://www.forge.mil/

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 75

Search for SPAWAR NSOC

Documentation is there too!

We Need Your Help!

• These tools are crude and inefficient, but they work

• More ideas than time

• We need people to chip in and make them more efficient
and increase their capability

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 76

and increase their capability

Thanks for Staying Awake!

Ed Aldridge

ed.aldridge@nsoc.med.osd.mil

Statement A: Approved for Public Release. Distribution is unlimited (14 January 2011). 77

Chris Sanders

chris.sanders.ctr@nsoc.med.osd.mil

Jason Smith

jason.smith.ctr@nsoc.med.osd.mil

