s BUILDING SECURITY IN

Making
Security
Measurable*

Measuring Software Security

Moving Towards Software Assurance Automation

Part 1

Joe Jarzombek, DHS Director, Software Assurance
Robert Martin, MITRE CWE Project Lead

August 21, 2012
MITRE

Today Everything’s Connected — Like an Ecosystem

Your System is a
attackable... T}, .0

%
d i
/ ‘: "‘.f(o-
. Yy
4 wly
-V
< ! ¢ po

' ..r’. ’ ’“'(,'
. LG4) o '
- < When this Other System gets subverted 1 |} ##% 02
Security through an un-patched vulnerability, a ’I"i o/ P
feastrabie’ mis-configuration, or an application | ;]' N %
o\l W%

weakness... o9

!! SOFTWHRE HSSURANCE FORUM
S \\X\)\.\BQ\B Léul IN

CDING @ECURIT\'\)"‘VI g

o~ m AN

R 10 LUU 1V AV \ \
v ' o\ Security MeasurementResources
f"""'/

=5

Oct 08 - Feb 09 - May 09 -

- — — -

‘é."\: "

Practical Measurement
Framework for
Software Assurance
and

Information Security

Oct 2008

BUILDING SECURITY IN

The Center for Internet
Security

TheCls | "
Security O O 9
Metrics 2

huwu zmnnhuuhﬁﬁnweanW|

nn:rhlpmsmncifwd:mmﬂ.mrt c:s.-_mu.sh:dams
team of one hundred (100} industry experts to address this need. The

result iz 3 set of standand metric and data definitions that can be used Consensus ”:

acress onganizations to collect and analyze dats on sequrity process N
performanae and outcomes. Metric

This document contsins ummvnm[ﬂ|nuutdﬁnmuuﬁr 3. (6]

|mpnrhnt|:l.|=nr_‘ziﬁ.ru‘.buﬂs Ingiders Managemens, Vulnerabiliy
Marsgement, Paich Maragement, Application Security, &Mfguium
Marsgement and Financial Metrics. Additions] consensus metrics

camenthy being defined for these 3 mdatﬁumihmnesﬁmmm&

!m- «-umummm

Inkomaion Assaace

Tochrokogy Anstps Contar (AIAC

mmmmmm

i|Page

Buffer Overflow L R L (‘T;'V?E'.'SJ)"’GCt"’"
(CWE-120) e g - 3, N L Exploit
Exploit = el N £z ol VNS ’1‘1 (CAPEC-66)

: R ' o 1 |

—

(CAPEC-123)

Exploitable oftware Weaknesses are sources for
future Zero-Day Attacks

Security is a Requisite Quality Attribute:
Vulnerable Software Enables Exploitation

= Rather than attempt to break or defeat
network or system security, hackers are
opting to target application software to

circumvent security controls.

O 75% of hacks occurred at application
level

— “90% of software attacks were aimed at
application Iayer” (Gartner & Symantec, June 2006)

O most exploitable software vulnerabilities
are attributable to non-secure coding
practices (and not identified in testing).

= Functional correctness must be exhibited ey v Irerabilities
even when software is subjected to i U
. . & Weaknesses
abnormal and hostile conditions m‘%%

In an era riddled with asymmetric cyber attacks, claims about system reliability,
integrity & safety must include provisions for built-in security of the enabling software.

3. Homeland
7 Security

Software Assurance Addresses Exploitable Software:
Outcomes of non-secure practices and/or malicious intent

Exploitation potential of vulnerability is independent of “intent”

D= QS~=~0()

Defects

EXPLOITABLE S

Unintentional
Vulnerabilities

Malware

OF TWARE

Intentional
Vulnerabilities

‘High quality’ can
reduce security
flaws attributable to
defects; yet
traditional S/IW
quality assurance
does not address
intentional
malicious behavior
in software

*Intentional
vulnerabilities:
spyware & malicious
logic deliberately
imbedded (might not
be considered
defects)

Software Assurance (SwA\) is the level of confidence that software functions as

intended and is free of vulnerabilities, either intentionally or unintentionally designed
or inserted as part of the software throughout the life cycle.”
From CNSS Instruction 4009 “National Information Assurance Glossary” (26APR2010)

Software Security Assurance: Not just a good idea

« Many people responsible for protecting
most critical infrastructure facilities have
felt comfortable about security of their
systems.

— Facilities rely on industrial control
systems (ICS) -- custom-built suites
of systems that control essential
mechanical functions of power grids,
processing plants, etc -- usually not
connected to the Internet, also
known as "air-gapped."

— Many industry owners, operators
and regulators believed that this
security model provided an infallible,
invulnerable barrier to malicious
cyber attacks from criminals and
advanced persistent threat (APT)
adversaries.

National Defense Authorization
Act (NDAA) -- which included a
focus on software security (in
Section 932, Strategy on
Computer Software Assurance)
-- serves as first cybersecurity
law of 2011 and requires the
U.S. Dept of Defense to
develop a strategy for ensuring
the security of software
applications.

Software Security Assurance, a
set of practices for ensuring
proactive application secuirity,
Is key to making applications
compliant with this new law.

“How Stuxnet Demonstrates That Software Assurance Equals Mission Assurance:
The rules of the game have changed,” by Rob Roy, Federal CTO of Fortify, an HP Company

Software Security Assurance: Not just a good idea

Steps organizations can take now to support software security assurance.

Tips from white paper on “7 Practical Steps to Delivering More Secure Software”:

Quickly evaluate current state of software security and create a plan for dealing with it throughout the life cycle.
Specify the risks and threats to the software so they can be eliminated before they are deployed.

Review the code for security vulnerabilities introduced during development.

Test and verify the code for vulnerabilities.

Build a gate to prevent applications with vulnerabilities from going into production.

Measure the success of the security plan so that the process can be continually improved.

Educate stakeholders about security so they can implement the security plan.

NoukwWwbNE

Any development organization can implement this security plan immediately and begin to receive a
return on their efforts within a minimal period of time. The key is to start now.

To complement the software strategy, there are several other areas of good security practices to
observe and implement if they are not already part of the organizational security approach:

1. Implement software configurations such as the U.S. Government Configuration Baseline (formerly the Federal
Desktop Core Configuration), strong authentication, and strict, documented internal policies and procedures.

2. Ask vendors to provide guarantees of software security as required by HR 6523.
3. Insert and enforce software assurance requirements in contracts.

Review IT security policies to ensure that all users of organizational networks and data comply with the strictest
security policies possible with respect to the mission.

5. Determine how much risk the organization can afford and who is accountable for that risk. Constructing a new
building in parts of California without accounting for earthquakes is unacceptable.

Building software

“How Stuxnet Demonstrates That Software Assurance Equals Mission Assurance: Wltho_Ut f';\ccountlng for
The rules of the game have changed,” by Rob Roy, Federal CTO of Fortify, an HP Company security is no longer an

http://email.tailorednews.com/r/im892fwx7egadZTy4Ql.htm acceptable risk.

IT/software security risk landscape is a convergence
between “defense in depth” and “defense in breadth”

Enterprise Risk Management
and Governance are security
motivators

Acquisition could be considered
the beginning of the lifecycle;
more than development

“In the digital age, sovereignty is
demarcated not by territorial frontiers
but by supply chains.”

— Dan Geer, CISO In-Q-Tel

Supply Chains

~— Risk

N

aradigm-shifting end to end business models 1

Technology stack with the necessary and
Supply sufficient components to support
Chains complimentary product providers

Product Oriented Building
Blocks
Networks | Applications | Qperating
Frameworks Systems

Synthesis SOLC — Management
Platforms
- Frameworks
Analysis — Applications — Compliance
Networks
Operating Systems

Software Assurance provides a focus for:

-- Secure Software Components,

-- Security in the Software Life Cycle,

-- Software Security in Services, and

-- Software Supply Chain Risk Management

GPAR TM

Homeland
@ Security

oH Q

‘t

L4ND tC

“Supply chain introduces risks to American society
that relies on Federal Government for essential
information and services.”

30 Sep 2005 changes to Federal Acquisition
Regulation (FAR) focus on IT Security

Focuses on the role of contractors in security as
Federal agencies outsource various IT functions.

“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure
Software Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis
of May 2004 GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks”

BUILDING SECURITY IN

Risk Management (Enterprise 4= Project):

Shared Processes & Practices € Different Focuses

User
Organization

» Enterprise-Level: — X

—

Rouse

= Regulatory compliance
= Changing threat environment

= Business Case /

Davefop
In-hronse

\

» Program/Project-Level: 4
- COSt Acquira Quisonrce ‘;

= Schedule
= Performance

Acquira/Outsource
;
In-house

Software Supply Chain Risk Management 7—/\ A ?
traverses enterprise and program/project interests *

Develop

Insert and enforce software assurance requirements in contracts.

2. Review IT security policies to ensure that all users of organizational networks and data
comply with the strictest security policies possible with respect to the mission.

oAkl

g@“ﬁHomEIandB D ine h h risk th izati fford and who i table for that risk
%’&QND—“@g Securlty . etermine how much risk the organization can afford and who is accountable for that risk.

Thousands of downloads from open
Security Vulnerabilities libraries with documented vulnerabilities

It's not uncommon for vulnerabilities to be discovered in popular components. Updates that address the
problem are typically provided quickly. However, even when security warnings are posted and easily acces-
sible, they are often overlooked. In March 2009, the United States Computer Emergency Readiness Team
and the National Institute of Standards and Technology (US-CERT/NIST) issued a warning that the Legion of

the Bouncy Castle Java Cryptography APl component

2 years after a vulnerability was discovered,
organizations continue to download the
flawed version of Bouncy Castle

was extremely vulnerable to remote attacks. InJanu-
ary 2011, almost 2 years later, 1,651 different organiz-

ations downloaded the vulnerable version of Bouncy

Castle from the Central Repository within a single month.V In January 2010, the US-CERT/NIST posted an
alert via their National Vulnerability Database that Jetty had a critical security flaw, which might allow attack-

ers to execute arbitrary code, overwrite files and allow unauthorized disclosure of information. Regardless
of the warning, in December of 2010, nearly a year later, approximately 11,000 different organizations down-
loaded the vulnerable version of Jetty from the Central Repository in a single month. Vi

Making the problem harder to deal with is the fact that a single vulnerability in a popular low level compo-
nent may be used in hundreds, if not thousands of other commonly used open source projects as illustrated
in Figure 6. You might not even be aware that your application uses the vulnerable component because it is

buried multiple layers down in the open source component stack.

Source: Maximizing Benefits and Mitigating Risks of Open Source Components in
Application Development, by Sonatype

Even after vulnerabilities
are discovered and
patches made available,
many developers use the
flawed, non-patched
version of reused
components

Who makes risk
decisions?

Who inherits the
residual risk?

Who ‘owns’ the
residual risk
attributable to
exploitable software?

((0 ’\"0-
T \Qﬁ ,&0 {5
Spring-beans-2.5.6 & € sy
vy 3 C
Vulnerability: s \
CVE-2010-1622 , P\ .
. - ¢ U
Severity critical L. ap?
¢ -
- 'o g :o a‘v"f""m
¢, 0 -
1 4 4 projects contain the o207 2" - ’— " camel
fNawed component o,"o", femm” ..
. B - -
E’EE::::---.' C(ﬂchdus
'E.:_:::::::" continuum
L) N :: : . - -
'Nln“‘ :~:~~:~.~-._ Cxf
' el “\ ,“s: Ve ~ d
TN T T ooy
' AP ~ -
"ll||||“\ A - aq
SD&C@
G
’o""hb
g(lro
’7/0
O
/8 O
10 O)q.
"'2/ 1(6
~ O/)‘

& ﬂ‘%;f»
> i (=
§F 3§ oww g 2% 7 ¢
§ £ 3 3837 5
¢ £ g d s g 2 ®

; :

H :

2

Source: Maximizing Benefits and Mitigating Risks of Open
Source Components in Application Development, by Sonatype

Challenges in Mitigating Risks Attributable to
Exploitable Software and Supply Chains (cont.)

Enterprises seek comprehensive capabilities to:
» Avoid accepting software with MALWARE pre-installed. MAEC

» Determine that no publicly reported VULNERABILITIES CVE
remain in code prior to operational acceptance, and that
future discoveries of common vulnerabilities and exposures
can be quickly patched.

» Determine that exploitable software WEAKNESSES that CWE
put the users most at risk are mitigated prior to operational
acceptance or after put into use (and not previously
evaluated for exploit potential).

T

~@/ Homeland
@ Security

Program Protection Plan Outline and
Guidance as “Expected Business
Practice”

What’s in the DoD Policy Memo?

Outline & Guidance

« VERSION 1.0+
« July 2011 +

— “Every acquisition program shall submit a PPP
for Milestone Decision Authority review and
approval at Milestone A and shall update the

it e PPP at each subsequent milestone and the Full-

Rate Production decision.”

JuL 18 20t
EPARTMENTS

— Expected business practice, effective
immediately, and reflected in upcoming DoDI
5000.02 and DAG updates

The PPP is the Single Focal Point for All

Signed by Principal) e
Deputy, USD(AT&L) on Security Activities on the Program
July 18, 2011

http://www.acq.osd.mil/se/pg/index.htmI#PPP

ST | Pase o Srem Protection Distribution Statement A~ Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1841 applies.

Counter-

Software Assurance Methods measure

Selection

s OF

Table 5.3-5-5: Application of Software Assurance Countermeasures (sample)

Development Process Development Process
. Software (CPI, critical Static . Code Test
Apply assurance activities to the function components, other Analysis IIJGSIBQ; Inspect EvE CAPEC C‘V.:JE :ent Coverage
i ftware) pla nsp pla pie pla pia es pla
procedures and structure imposed on so -
software development Developmental CPI SW 100/80% Lovels | 100/80 | 100/60 | 100/60 | 100/60 | Yes | 75/50%
iy 100/80% T™wo 1 1000 | 100/70 | 100/70 | 100/70 | Yes | 75/50%
unction SW Levels
Other Developmental SW none One level 100/65 10/0 10/0 10/0 No 50/25%
COTS CPI and Critical Vendor Vendor 0 0
Function SW Vinclor SwA SwA SwA 0 Yen UNK
COTS (other than CPIl and 0
Critical Function) and NDI SW No No No 0 0 No UNK
H Operational System
Operational System — —
Implement countermeasures to the Multiple | Fault | Least | System Element | lo , | SW load
. © g . Supplier Isolation | Privilege Isolation lidati key
design and acquisition of end-item Redundancy vafidation
Software products and their interfaces Developmental CPl SW 30% All all yes All All
Developmental Critical N
Function SW 50% All All yes All all
Other Developmental SW none Partial none None all all
COTS (CPl and CF) and NDI Partial Al N Wrappers/ I
Development Environment = S B al .
eve p Development Environment
Apply assurance activities to the Generated
i t and tools for d lopi SW Product Source Faiowws Bowde
environment and tools 1or aeveloping, testing inspection
testing, and integrating software code : pla
. C Compiler No Yes 50/20
and interfaces Runtime libraries Yes Yes 70/none
Automated test system No Yes 50/none
Configuration management No Yes NA
system
Database No Yes 50/none
Development Environment c .
i ontrolled access; Cleared personnel only

Additional Guidance in PPP Outline and Guidance

53 Paga 18 1 roCos Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-5-1842 applies.

automation can help...

Construction =

p—

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification
(CAPEC)

Deployment —

___ CWE Coverage Claims Representation (CCR)

~ Common Weakness Enumeration (CWE)
Common Weakness Risk Analysis Framework (CWRAF)

= . . Common Weakness Scoring System (CWSS)
/| Verification —

Common Attack Pattern Enumeration and Classification
(CAPEC)

CWE Coverage Claims Representation (CCR)

—

~ Common Vulnerabilities and Exposures (CVE)
Open Vulnerability Assessment Language (OVAL)

Malware Attribute Enumeration and Characterization
(MAEC)

Cyber Obersvables eXpression (CybOX)

—

Software Assurance

Software Assurance (SwA) is the level of confidence thait
software funclioms &s iimttartietianti isffeeedfironinartrieliziedjties
either intentionally or unintentionally designed or inserted as
part of the software throughout the life cycle.*

Derived From: CNSSI-4009

Automation

Languages, enumerations,
registries, tools, and repositories

throughout

. Including design, coding, testing,
the Lifecycle deployment, configuration and
operation

Making Security Measurable (MSM)
“You Are Here”

N N

Software Assurance Enterprise Security Management Threat Management
Design Design —
/ \ / \ Vulnerabilities
_ Exploits
Deploy Build Assess Test - P
A\ / AK / Attacks
Test Deploy Malware
CWE, CAPEC, CWSS, CWRAF CPE, CCE, OVAL, OCIL, CVE, CWE, CAPEC, MAEC,
XCCDF, Assetld, ARF CybOX, IODEF, RID, RID-T,

CYBEX ©2012 MITRE

ECOSYSTEM

PLANT COMMUNITY
' A

Making
Security
Measurable™

STRATOSPHERE

55 km
TROPOSFHERE
ﬁﬁhm Co
2
: DEFORESTATION
H
GO CHy AND SUCCESSION
FOSSIL FUEL il R
EMISSIONS AGRICULTURAL - 2
CONVERSION

—_— e ———— —— — — —— —— — — — ——— —— — — ———— ——— — — — — -

NATURAL BALANCE

“'.,CUB
FHOTOSYNTHESIS
Co
f’JF!ff RESPAATION
f;:f(;!
!lra Ry M
DEAD CRAGANIC
MATTER ™ |

SEDIMENTARY ROCKS

ﬁﬂpUSqua

DECOMPCSITION

AR

&23

- LATION

$® SNOWMELT
A\ RUNOFF

INTERCEPTION

QVERLAND
_ FLOW

osmess:om
STORAGE SURFACE
DETENTION\Z

WATER TABLE GROUNDWATER FLOW we=T() STREAM == STREAM.

Making 10 0EEP SToRAGE AMNEL

Security
Measurable™

Contaminants

| and sediment

g "' | are filtered
~. / Dissipates

‘_ stream

| energy

Provides
critical wildlife
habitat

. Cleaner water
= outflow

Groundwater
flow

Bacteria
break down
contaminants

Slow release
of stored water | Stream"

How wetlands work

0|

(S NG N Microsoft Security Bulletin MS10-071 - Critical: Cumulative Security Update for Internet Explorer (2360131)

@_P)' L X] (.) (ﬂ http: / /www.microsoft.com/technet/security/Bulletin/MS10-07 1. mspx ﬁ '} ‘-"“ Google Q‘\

Qick Here to Install Silverlight United States Change | All Microsoft Sites
Microsoft | TechNet [search crosoft.con ong B K23
TechNet Home TechCenters Downloads TechMNet Program Subscriptions Security Bulletins Archive
Search for TechMNet Home > TechNet Security > Bulletins
\ 6o

et securty Microsoft Security Bulletin MS10-071 - Critical

[ecurt
Security Bulletin Search | Cumulative Security Update for Internet Explorer (2360131)
Library Published: October 12, 2010 | Updated: October 13, 2010
Learn
Downloads Version: 1.1
Support

General Information

Executive Summary

This security update resolves seven privately reported vulnerabilities and three publicly disclosed vulnerabilities in Internet
Explorer. The most severe vulnerabilities could allow remote code execution if a user views a specially crafted Web page
using Internet Explorer. Users whose accounts are configured to have fewer user rights on the system could be less
irmnactad Fhan ueare swihn anarakas wibth adminictrabivia iear Finhte

“+ Jop of section

Frequently Asked Questions (FAQ) Related to This Security Update

Vulnerability Information

Severity Ratings and Vulnerability Idg

AutoComplete Information Disclogfire Vulnerability - CVE-2010-0808

B

HTML Sanitization Vulnerabili - CVE-2010-3243

2]

HTML Sanitization Vulnerabiljfy - CVE-2010-3324

&

ation Disclosure Vulnerability - CVE-2010-3325

&

CSS Special Character Infor
ion Vulnerability - CVE-2010-3326

Uninitialized Memory Corrug

o]

Anchor Element Information§Disclosure Vulnerability - CVE-2010-3327

n Vulnerability - CVE-2010-3328

o]

Uninitialized Memory Corrupt

&

Uninitialized Memory Corruptiof Vulnerability - CVE-2010-3329

&

Cross-Domain Information Disclo e Vulnerability - CVE-2010-3330

ility - CVE-2010-3331

&

Uninitialized Memory Corruption Vulne

[

(*DE (e CO ()

ORACLE

Mozilla Firefox —

(E http:/ /www.oracle.com/technetwork/topics/security/cpuoct2010-175626. htr) (i Google)
0

(Sign InRegister for Account | Help) United States ~ Communities ~ lama.. ~ |wantto.. « | Secure Search

Products and Services Downloads Store Support Education Partners About Oracle Technology Network
Oracle Technology Network Topics ty
Embedded

Bl & Data Warehousing
NET
Linuoc

PHP

Oracle Critical Patch Update Advisory - October 2010

Description

A Critical Patch Update is a collection of patches for multiple security vulnerabilities. It also includes non-security fixes that are required
(because of interdependencies) by those security patches. Critical Patch Updates are cumulative, except as noted below, but each advisory
describes only the security fixes added since the previous Critical Patch Update. Thus, prior Critical Patch Update Advisories should be
reviewed for information reaardina eardier accumulated securitv fixes. Please refer to:

Oracle Database Server Risk Matrix

Package e— = CVSS VERSION 2.0 RISK (see Risk Matrix Definitions) '-':t:f'::d
and/or Exploit
Componant| Enctacol | without | Base | A A Authen- [Confiden-| Avail- [o = e
Required | Auth.? |Score| Vector | Complexity |tication | tiality 9T | abitity R:.".‘:'.".,"
CVE-2010-2390
(Oracle Enterprise " . " 10.1.0.5, See
Manager Grid Console HTTP None Yes 7.5 |Network Low None Partial+ Partial+ |Partial+ 10.2.0.3 Note 1
Control)
10.1.0.5,
CVE-2010-2419 M \;llr;:al ONm::B Create Session No 6.5 |Network Low Single Partial+ | Partial+ |Partial+ 1?33;
11.2.0.1
&= Data| Oracle Execute on See
CVE-2010-1321 DBMS_CDC_ No 5.5 |Network Low Single Partial+ | Partial+ | None -
e Net Note 2
PUBLISH
Oracle B _
CVE-2010-2412 Net Create Session No 5.5 |Network Low Single Partial+ Partial+ | None 11.1.0.7
10.1.0.5
Execute on
CVE-2010-2415 |Chang@Data) Oracle | nop,o" oo No 49 |Network| Medium | Single | Partial+ | Partial+ | None 10.2.04,
e Net 11.1.0.7
PUBLISH
11.2.01
Execute on
Oracle " " " " " See
CVE-2010-2411 eue SYS.DBMS_ No 4.6 |Network High Single Partial+ Partial+ |Partial+ -
Net 1JOB Note 2
10.1.0.5,
CVE-2010-2407 K HTTP None Yes 4.3 |Network Medium None None Partial None 10.2.0.4,
11.1.0.7
CVE-2010-2391 e RDBMS Oﬁ’;'e Create Session| No 3.6 |Network High Single | Partial | Partial | None "1%-"2-%%
CVE-2010-2389 Oracle See
Perl Net Local Logon No 1.0 Local High Single None Partial+ | None - Note 2 -

AnOO rhn.redhat.com | Red Hat Support)

- (@) (¢) () (B[nitp://rhn.redhat.com/errata/RHSA-2010-0723.htm w v 20 Google Q)

Errata Log In About RHN

@ Important: kernel security and bug fix update

Advisory: RHSA-2010:0723-1
Type: Security Advisory
Severity: Important
Issued on: 2010-09-29
Last updated on: 2010-09-29

Affected Products: Red Hat Enterprise Linux (v. 5 server)
Red Hat Enterprise Linux Desktop (v. 5 client)

hsa-20100723.xml

CVE-2010-1083
CVE-2010-2492
CVE-2010-2798
CVE-2010-2938
CVE-2010-2942
CVE-2010-2943
CVE-2010-301

CVEs (cve.mitre.org):

mOO APPLE-SA-2010-08-11-1 i0S 4.0.2 Update for iPhone and iPod touch ()

o Q 7_ ’ ‘_) [Irhttp:lIIists.apple.comjarchives/securitv-announce/2010[}Auglm5900000.ht‘i:rY

(*8+ Google Q|

Y %o

Mailing Lists

Apple Mailing Lists

[] Search only in security-announce list
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] .L

APPLE-SA-2010-08-11-1 iOS 4.0.2 Update for iPhone and iPod touch

Subject: APPLE-SA-2010-08-11-1 i0S 4.0.2 Update for iPhone and iPod touch
From: Apple Product Security <email@hidden>

Date: Wed, 11 Aug 2010 12:19:43 -0700

Delivered-to: email@hidden

Delivered-to: email@hidden

Hash: SHAl

APPLE-SA-2010-08-11-~1 iOS 4.0.2 Update for iPhone and iPod touch

ios 4.0.2 uUpdate for iPhone and iPod touch is now available and
addresses the following:

3 Pough 4.0.1 for iPhone 3G and later,
ios 2. jh 4.0 for iPod touch (2nd generation) and later
Impact: v:.ew:l.ng a PDF document with maliciously crafted embedded
fonts may allow arbitrary code execution

Description: A stack buffer overflow exists in FreeType's handling

nf PR Aanandao Miawinsg a DNFT Ancromand width maliaiAanoeler Aavafead -

CVE 1999 to 2012

60000 ~

frdag

Advisory Issuers Using CVE Identifiers (g:_ ey
\ /o

"Trustwav ?EZ“? . EMC oeFenssY _

Novell PID CANISCC IS COMPATIBLE
300”' %7) q Secunia 286 Products and Services

@ e s g e debian (AP = from 157 Organizations in

26 Countries

cscosvsrens FOUNdstone suse ‘

"‘ gentoo linux*
9 symantec. picrosoft

== aeduniper d e
.................... orRACLE

@Sun WY E=-, Google

microsystems Laboratory

Informatlon
Assurance

US-CERT Vulnerability

UNITED STATES COMPUTER EMERGENCY READINESS TEAM Management

Cyber Security Bulletin - Technical Cyber Security Alerts - Cyber Security Alerts “A M)
P = NIST N
e - | cufcxusrs\
' Uolar 3
NIST Assured
Compliance
Assessment
N s
4 ACA
ADO PTE? Host Based
: Security
from 31 Organizations . Solution
7 Countries (HBS_S)
Public Repositories of OVAL content
@debian NIST Novell @ redhat secrod

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

XSS
-~ buf

sql-inject
20.00% - _______._.-//\ dot

=~ php-include
infoleak

15.00% - —— dos-malform

link

\ - format-string

X crypt

priv

perm

metachar

int-overflow

25.00%

10.00% A

5.00% —

S

! < 4i___'d\l\ . _— (.\._ —
B P e e — , ' , [| Y /
=== == &\

0.00%
2001 2002 2003 2004 2005 2006 2007 MITRE

Removing and Preventing the Vulnerabilities

Requires More Specific Definitions...CWEs

9

XSS
14

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) (79)
* Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (80)
* Improper Neutralization of Script in an Error Message Web Page (81)
« Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (82)
* Improper Neutralization of Script in Attributes in a Web Page (83)
* Improper Neutralization of Encoded URI Schemes in a Web Page (84)
* Doubled Character XSS Manipulations (85)
* Improper Neutralization of Invalid Characters in Identifiers in Web Pages (86)
* Improper Neutralization of Alternate XSS Syntax (87)

-=— buf
sqgl-inject
dot 19

-~ php-include
infoleak

—— dos-malform
link
format-string
crypt
priv
perm
metachar
int-overflow

Improper Restriction of Operations within the Bounds of a Memory Buffer (119)
« Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’) (120)
* Write-what-where Condition (123)

* Out-of-bounds Read (125)

 Improper Handling of Length Parameter Inconsistency (130)
 Improper Validation of Array Index (129)

* Return of Pointer Value Outside of Expected Range (466)
« Access of Memory Location Before Start of Buffer (786)

» Access of Memory Location After End of Buffer (788)

« Buffer Access with Incorrect Length Value 805

* Untrusted Pointer Dereference (822)

« Use of Out-of-range Pointer Offset (823)

« Access of Uninitialized Pointer (824)

« Expired Pointer Dereference (825)

Path Traversal (22)
+ Relative Path Traversal (23)
» Path Traversal: "../filedir' (24)
» Path Traversal: */..filedir' (25)
¢ €emmmmmmme==-8§ more here --------=----->
» Path Traversal: "..../[I' (34)
» Path Traversal: ".../.../I' (35)
» Absolute Path Traversal (36)
* Path Traversal: ‘/absolute/pathname/here’ (37)
« Path Traversal: "\absolute\pathname\here’ (38)
* Path Traversal: 'C:dirname’ (39)
« Path Traversal: "\UNC\share\name\' (Windows UNC Share) (40)

© 2012 MITRE

% Ew Previous
Modlﬂer:

h - Modifications
m Covegtsing 3) te (UE OOr |a"l£?mt'°
Injection ®

h

1esse

itermal™ “Impropgafmpe
CllldE: 58360
-y Source mAppllcabIe

Wealnesses m 3

- CategoryCategory Secur : S data
Mappings BaseWeakness Top code,g.égi’» 48 e?&%
...t~ £ Deviopren § QUCegrteBon
V) =@, ing: § . c %
15,55 o m.gm eam H c'-m - 3 X wQExampIeo
SEiTG 3 e Time &_¢ .9%’ Eﬁﬂ-oPare Of gy wies. 2
TEIER0 Va.ue"’mPUt E!tm(f‘y i) 510 BokEan,E mﬁNQrEres
g O wgArchitectire (])" H uE an%’ i %ﬁ a: Ogg D: ClassWeakress
2 £ -— 000w
ng‘é’ Film =€=0=C
g Lo ol
Q4 f 14 HOK gaEJ

buffe Subm ission

eak

Coriceé
QE
rti

=
%)
=.
.S
=S
T =t
=
N
g"
=8
D

i Modification
O file pertaing USET toView

Submi s

Wouldn’t it be nice
if the weaknesses
In software were as
easy to spot and
their impact as
easy to understand
as a screen door in
a submarine...

Yy The Security Development Lifecycle : MSO8-078 and the SDL
| - > | < | -+ &2 http://blogs.msdn.com/sdl/farchive/2008/12/18/ms08-078-and-the-sdl.aspx GE3 -~ Q- Google

_:T‘" T R Welcome to MSDN Blogs Sign in | Join | Help
L I Scancn
The Security

Development Lifecycle

Recent Posts MSO08-078 and the SDL [@aaai

MSOS-078 and th SDL

Au;ut»‘-.a}: :t ing CAT.NET CTP and AntiXSS Hi, Michael here.

SDL videos Every bug is an opportunity te learn, and the security update that fixed the data binding bug that affected

Blue - B . Internet Explorer users is Nno exception.

ueHat SDL Sessions Wrap-up

Secure Coding Secrets? The Common Vulnerabilities and Exposures (CVE) entry for this bug is CVE-2008-4844,
Before I get started, I want to explain the goals of the SDL and the security work here at Microsoft. The SDL is

Tags designed as a multi-layered process to help systemically reduce security vulnerabilities; if one component of
the SDL process fails to prevent or catch a bug, then some other component should prevent or catch the bug.

AT t Crawl Walk Run The SDL alsc mandates the use of security defenses whose impact will be reflected in the "mitigations"

section of a security bulletin, because we know that no software development process will catch all security

Priw y SDL Net K bugs. As we hawve said many times, the goal of the SDL is to "Reduce vulnerabilities, and reduce the severity

rity 2 f— irity | Kh of what's missed."
threat modelinc In this post, I want to focus on the SDL-required code analysis, code review, fuzzing and compiler and
' 9 operating system defenses and how they fared.

News Background
The bug was an invalid pointer dereference in MSHTML.DLL when the code handles data binding. It's

BI roll important to point out that there is o heap corruption and there is no heap-based buffer overrun!

- When data binding is used, IE creates an object which contains an array of data binding objects. In the code

BlueHat Security Briefings in guestion, when a data binding cbject is released, the array length is not correctly updated leading to a

The Microsoft Security Response Center function call inte freed memory.

Michael Howard's Web Log The vulnerable code looks a little like this {(by the way, the real array name is _aryPXfer, but I figured

Trhe Data Privacy Imperative ArrayOfObjectsFromlIE is a little more descriptive for people not in the Internet Explorer team.)

Emﬁ“mivu“”“”’““'H““‘”“’& int MaxIdx = ArrayOfObjectsFromIE.Size()—-1:

efense
Visual Studio Code Analysis Blog for (imnt 4i=0; i == MaxIdx; i++) {
MSRC Ecosystem Strategy Team if (lArrayOfObjectsFromIE[i])

continue;
Books / Papers / Guidance
ArrayOfObjectsFromIE([i]->TransferFromSource() ;
The Security Development Lifecycle

(Howard and Lipner) ‘e
Privacy Guidelines for Developing)
Software Products and Services
Microsoft Security Development Here's how the vulnerability manifests itself: if there are two data transfers with the same identifier (so
Lifecycle (SDL) Portal MaxIdx is 2), and the first transfer updates the length of the ArrayOfObjectsFromIE array when its work was
Mic e S ity D lopmant done and releases its data binding object, the loop count would still be whatewver Maxldx was at the start of
croso security Developme
» (SDL) — Process Guidance the loop, 2.

’ This isja time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
Microsoft Security D Tent Commpn Weakness Enumeration (CWE) classification for this vulnerability is COWE-367.
Lifecycle 5 — Process Guidance
C-Joc) /rﬁix was to check the maximum iteration count on each loop iteration rather than once before the loop

tacte- thic ic tibg fixfor a TOOTON buag o cocase tho chacl 1 asoossible to the octi bac. =

a time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
on Weakness Enumeration {OWE) classification for this vulnerability is CWE-367.
TOC O cEoe, e Wil CpOatE SO Loy 1o Sadress e

QOur static analysis tools don't find this because the tools would need to understand the re-entrant nature of
the code.

September 2008 (5)
August 2008 (2)
July 2008 (8)

June 2008 (4) Fuzz Testing

CWE - CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (1.10)

| [http: / /cwe.mitre.org /data/definitions/367.html

~(Google Q)

CuvE

Home > CWE List > CWE- Individual Dictionary Definition (1.10)

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents

Community
Related Activities
Discussion List
Research
CWE/SANS Top 25
CWSs

Calendar
Free Newsletter

Compatibility

Program
Requirements
Declarations

Make a Declaration

Contact Us

Search the Site

MOST DANGEROUS
SOFTWARE
ERRORS

Search by ID: [l ©

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tvpes

——

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
Time-of-check Time-of-use (TOCTOU) Race Condition

Weakness ID: 367 (weakness Base)
¥ Description

Description Summary
The software checks the state of a resource before using that resource, but the resource's state can change between the check
and the use in a way that invalidates the results of the check. This can cause the software to perform invalid actions when the
resource is in an unexpected state.

Extended Description
This weakness can be security-relevant when an attacker can influence the state of the resource between check and use. This
can happen with shared resources such as files, memory, or even variables in multithreaded programs.

v Alternate Terms

Status: Incomplete

TOCTTOU: The TOCCTOU acronym expands to "Time Of Check To Time Of Use". Usage varies between TOCTOU and TOCTTOU.

¥ Time of Introduction
* Implementation

¥ Applicable Platforms

Lang uages

All

¥ Common Consequences
Scope Effect

Access Control
Access Control
Authorization

Integrity

The attacker can gain access to otherwise unauthorized resources.

Race conditions such as this kind may be employed to gain read or write access to resources which are not
normally readable or writable by the user in question.

The resource in question, or other resources (through the corrupted one), may be changed in undesirable ways
by a malicious user.

If a file or other resource is written in this method, as opposed to in a valid way, logging of the activity may not
occur.

In some cases it may be possible to delete files a malicious user might not otherwise have access to, such as
log files. v

Accountability

Non-Repudiation

[

IBM Software

Technical White Paper Test and vulnerability assessment

Testing applications for security defects should be an integral and organic part of any
software testing process. During security testing, organizations should test to help ensure
that the security requirements have been implemented and the product is free of

One way to improve software security is to gain a better vuinerabilities.

understanding of the most common weaknesses that can The SEF refers to the MITRE Common Weakness Enumeration® (CWE) list and the Common
affect software security. With that in mind, there are many Vulnerability
resources available online to help organizations learn about be tested. Th

information a

and vulnerabi

Resources available to help organizations protect systems in against the m
Creating a se
Resource Focus plan includes
DoD Information Assurance The DIACAP defines the minimum standg 5 For more inford . =
Certification and Accreditation | accredited by the DoD and authorized 10 5 For more infor securlty in Develﬂpment: The IBM Seclll'e
Process (DIACAP) application-level security controls, but it i H H
activities, general tasks, and a managem) Englnee"ng Framework

10 Security in Development
Defense Information Systems The DISA provides a security technical inf
Agency (DISA) development that offer more granular inforremormrorapproaTor-orsoTWarETEvErToTY
bility assessment technigues. The checklist is the same one used by DoD auditors.

U.S. Department of Homeland | The DHS offers information on security best practices and tools for application- and sof
Security (DHS part of its “Build Security In" initiative.

Redguides
The Common Weaknesses The MITRE Corporation maintaing the online common wulnerabilities and expesures (C for Business Leaders

Enumeration project, a enumeration (CWE) knowledge bases about currently known vulnerabilities and types of

community-based program knowledge base focuses on packaged software and deals with patches and known wul
sponsored by the MITRE knowledge base focuses on code vulnerabilities. Danny Alan
Corporation, an |IBM Business Andras Szakal
Jim Whit

Partner ‘Axel Buocker
The Open Web Application One of the best sources for information on web applcation security issues, the OWASP
Security Project (OWASP) 10 list of the most dangerous and most commonly found and commonly exploited ving B ioewsligaiing vommmon developrment provesess

how to identify, fix and aveid them. the IBM Integrated Product Development process
Cigital Building Securty In Created by Cigita, an IBM Business Partner, the BSMM is Gesigned to heip organizatio] ™ [TIPNEEn Seruiih SPermnsss i reaurements
Maturity Mode! (BSIMM) and plan a software sscurity initiative. The focus is on making applications more secure,

M Discussing test and vulnerability

process and at later stages in the software life cycle. i

IBM X-Force™ research and A global cyberthreat and risk analysis team that menitors traffic and attacks around the

development team [BM X-Force team is an excelent resource for trend analysis and answers o questions 8
altacks are most common, where they are coming from and whal organizations can do
the risks.

IBM Institute for Advanced This companywide cybersecurity initiative applies IBM research, services, software and 1

Security (IAS) help governments and other clients improve the security and resiliency of their [T and by & Redbooks
¢

% Software Engineering Institute

Making the Business Case for
Software Assurance

Nancy R. Mead
Juliia H. Allen

'W. Arthur Conklin
Antonio Drommi
John Harrison
Jeff Ingalsbe
James Rainay
Dan Shoemaker

April 2009

SPECIAL REPORT
CMU/SEI-2008-5R-001

CERT Program
Uniimited distribution subject 1o the copyright.

ttp:iwwe 8l e, edu

CarnegieMellon

MITRE

OVM: An Ontology for Vulnerability Management

Ju An Wang & Minzhe Guo
Southern Polytechnic State University
1100 South Marietta Parkway
Marietta, GA 30060
(01) 678-915-3718

jwang@spsu.edu

ABSTRACT

It order to reach the goals of the Information Secunity Automation
Program (1SAP) [1], we propose an omtological approach 1o
capturing and utilizing the fundamental concepts in information
security and their selationship, retrieving vulnerability data and

semantics in different contexts, causing misunderstanding among
stzke holders due to the language ambiguity. On the other hand,
the standardization, design and development of security tools [1-
5] requirc a syummu: chsﬂfmuun and definition of security

and It is img to have a clearly defined

reasoning about the caus.r. and impact of vulnerabilities. Our bulary and dardized languag, a8 means o “-‘;"fﬂd‘;lv
| i Inerabi (OVM) has bee system vulaerabali formation an ir
lated :,r,_h "‘]1 v h lities in NVD %2] :?lh Aditi ﬁ ol among all the pcnple involved. We believe that
g rules.) Lol and d ining semantic technology in general, and ontology in pamicular, could
mechanisms. \1Vil.h dtT I i of be a useful tool for system security. Our research work has

valnerabilities and their related cm;:q:tugsuch as atacks and
countermeasures, OVM provides a promising pathway to making
ISAP successful.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks): General [Security
and

confirmed this belief and this paper will report some of our work
in this area.

An ontology s a specification of concepts and their relationship.
Ontology represents knowledge in a formal and structured form.
Therefore, oatology provides a better tool for communication,
rcusnbl]m- and organization of knowledge Omntology is a

and protection]; K.6.5 [Manag) of Computing
Information Systems): Security and Protection,

General Terms

Omrology, Security, Vulnerability Analysis and Management
Keywords

Security Inerability, S i hnology, Ontology,

Vulnerability analysis

1. INTRODUCTION
The Information Security Automation Program (ISAP) sa us.
government multi-agency initiative 1o enable and

k repn ion (KR) system based on Description
Logics (DLs} [6], which is an umbrella name for a family of KR
formalisms representing knowledge in various domains. The DL
formalism specifies a knowledge domain as the “world” by first
defining the relevant concepts of the domain, and then it uses
these concepts to specify propertics of objects and individuals
occurring in the domain [lD—lE], Semantic mc]mnhgn:s not only
provide a lml for jon, but also a foundation for high-
bevel and dec i Omnrology, in particalar,
provides the pon:nual of formal lngu: inference based on well-
dcﬁmd data and knowledge bases. Ontology captures the

i llected data and use the explieit

standardization of technical security operations [1]. hs high-level
goals include standards based avtomation of security checking and
remediation as well as automation of technical compliance
activities, Its low-level ob;ccuvci include enabling standards
based ication of vulnersbility data, izing

fi baseli for various IT pmium
asscssmg mfmmamm systems and reporting compliance status,
using standaed metrics 1o weight and aggrepate potential

vulnerability impact, and remediating identified vulnerabilities [1].

Secure computer systems ensure that confidentiality, integrity,
and availability are mainsined for usces, data, and other
information assets. Over the past a few decades, a significantly
large amount of knowledge has been accumulated in mr: arca of
information security. However, a lot of in infe

k ledge of concepts and relationships to deduce the implicit
and inherent knowledge. As a matter of fact, a heavy-weight
ontology could be defined s a formal logic system, as it includes
facts n:ui m]c-s cunc:pu mmcq:n axonomies, relationships,

A vulnerability 15 a security ﬂaw wl:uch. anses from computer
system design, implen and

Rescarch in the area of vulnerability analysis focuses on d:s.cavcry
of previously unknown vilnerabilities and quantification of the
security of systems according to some metrics. Rescarchers at
MITRE have provided a standard format for naming a security
vulnerability, called Common Vulnerabilities and Exposures
[C\’E] [H] which assigns each vulnerability a umigue

o

security are vaguely defined and sometimes they have different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provaded thet copoes are
rot made or distributed for profit or commercizl advantage and that
copées bear this notice and the full citation an the first page. To copy
otherwise, to republish, to post on servers or % redisribote 1o lists,
requines prior specific permission and/or a fee

CSIRW 09, Apeil 13-15, Ozk Ridge, Ternessee, USA

Capyright © 2009 ACM 978.1-60558-518.5 __ $5.00

ion nurmber. We bave designed a vulaerability oatology

OWVM (ontology for vulnerability management) populated with all
existing vulnerabilities in NVD [2). It supports research on
reasoning about vulnerabilities and characterization of
vulnerabilitics and their impact on computing systems. Vendors
and users can use our omwlogy in support of vulnerability
analysis, tool development and vulnerability management.

‘The rest of this paper is organized as follows: Section 2 presents
the architecture of our OVM. Section 3 discusses how to populate
the OVM with vulnerability instances from NVD and other

A Human Capital Crisis in
Cybersecurity
Technical Proficiency Matters

A White Paper of the
CSIS Commission on Cybersecurity for the 44th Presidency

COCHAIRS
Reprezentative Jamez R. Langevin
Represzentative Michael T. McCaul
Scott Charmey
Lt. General Harry Raduegs,

USAF (ret)

16 July 2010

based on a body of knowledge that represents the complete set of concepts, terms
and activities that make up a professional domain. And absent such a body of
knowledge there is little basis for supporting a certification program. Indeed it
would be dangerous and misleading.

A complete body of knowledge covering the entire field of software engineering may
be years away. However, the body of knowledge needed by professionals to create
software free of common and critical security flaws has been developed, vetted
widely and kept up to date. That is the foundation for a certification program in
software assurance that can gain wide adoption. It was created in late 2008 by a
consortium of national experts, sponsored by DHS and NSA, and was updated in late
2009. It contains ranked lists of the most common errors, explanations of why the
errors are dangerous, examples of those errors in multiple languages. and ways of

eliminating those errors. It can be found at hitp://cwe mitre.org/top23,

Any programmer who writes code without being aware of those problems and is not
capable of writing code free of those errors is a threat to his or her employers and to

others who use computers connected to systems running his or her software.

PRIOIECT nupErTOR

Jq

A complete body of knowledge covering the entire field of software engineering may
be years away. However, the body of knowledge needed by professionals to create
software free of common and critical security flaws has been developed, vetted
widely and kept up to date. That is the foundation for a certification program in
software assurance that can gain wide adoption. It was created in late 2008 by a
consortium of national experts, sponsored by DHS and NSA, and was updated in late
2009. It contains ranked lists of the most common errors, explanations of why the
errors are dangerous, examples of those errors in multiple languages, and ways of
eliminating those errors. It can be found at http://cwe.mitre.org/top25.

Any programmer who writes code without being aware of those problems and is not
capable of writing code free of those errors is a threat to his or her employers and to
others who use computers connected to systems running his or her software.

©2012 MITRE

The Certified Secure Software Lifecycle Professional (CSSLP) Certification Program
- c s s L P “ will show software lifecycle stakeholders not only how to implement security, but how to

glean security requirements, design, architect, test and deploy secure software.

An Overview of the Steps:

(1sc)* ® 5.day CSSLP CBK® Education Program
Educate yourself and learn security best practices and industry standards for the software lifecycle through the CSSLP Education

Program.(ISCY provides education your way to fit your life and schedule.Completing this course will, not only teach all of the
— stablish a security plan across your

COMPUTER 4

4
(4
TESTING >
-
P

-
& NOW AVAILABLE
- FOR THE

Foreword

In 2008, the Software Assurance Forum for Excel-
lence in Code (SAFECode) published the first version
of this report in an effort to help others in the
industry initiate or improve their own software
assurance programs and encourage the industry-
wide adoption of what we believe to be the most
fundamental secure development methods. This
work remains our most in-demand paper and has
been downloaded more than 50,000 times since its
original release.

However, secure software development is not only a
goal, it is also a process. In the nearly two and 3 half
years since we first released this paper, the process
of building secure software has continued to evolve
and improve alongside i nd advance-

bringing these methods together and sharing them
with the larger community, SAFECode hopes to
move the industry beyond defining theoretical best
practices to describing sets of software engineer-
ing practices that have been shown to improve

the security of software and are currentlyin use at

Industry
Uptake

leading software companies. Using this approach
enables SAFECode t f
best practices that are provey to

and implementable even
i d

taken into account.

Though expanded, oufkey goals

remain—keep it confise, actiond

What's New

ments in the information and communications
technology industry. Much has been learned not
only through increased community collaboration,
but also through the ongoing internal efforts of
SAFECode’s member companies. This 2nd Edition
aims to help disseminate that new knowledge.

Just as with the original paper, this paper is not
meant to be a comprehensive guide to all possible
secure development practices. Rather, it is meant to
provide a foundational set of secure development
practices that have been effective inimproving

software security in real-world i by

origingf also covered Training, R
Handfing and Documentation, t
detailed treatment in SA

The paper also contains two important, additional
sections for each listed practice that will further
increases its value to implementers—Common
Weakness Enumeration (CWE) references and
Verification guidance.

1200
21111
1000
11111
1200

SAFECode

software Assurance Forum for Excellence in Code

Driving Security and Integrity

S

rification plan is a dir

sefurity engineering training/nd software integrity
iff the global supply chain,#nd thus we have refined
lour focus in this paper ty/concentrate on the core
areas of design, develgbment and testing.

fample.

argdvailable that support the Threat Model-

xé:ss with automated analysis of designs and

SAFECode members across their diverse develop-
ment environments.

It is important to note that these are the “practiced
practices” employed by SAFECode members, which
we identified through an ongoing analysis of our
members'individual software security efforts. By

The paper also confains two important, additional
listed practice that will further
lue to implementers—Common
umeration (CWE) references and

Verificatjén guidance.

sections for ea
increases its

2 Driving Security and Tnteqrity

estions for possible mitigations, issue-tracki
ration and communication related to

their Threat
ere tools are used

less. Some practitioners have ho
eling process to the point
itomate as much
jatability of ¢
of s

ion, integration with a threat database and

#3s possible, raising the
process and providing another
rt with standard diagramming,

kases, and execution of recurring tasks.

MITRE

CWE References

Much of CWE focuses on implementation issues,
and Threat Modeling is a design-time event. There

are, however, a number of CWEs that are applicable
to the threat modeling process, induding:

- CWE-287: Improper authentication is an example
of weakness that could be exploited by a Spoof-
ing threat

CWE-264: Permissions, Plivilcgcs,and Access
Controls is a parent weakness of many Tamper-
ing, Repudiation and Elevation of Privilege
threats

CWE-31: Missing Encryption of Sensitive Data is
an example of an Information Disclosure threat

CWE-400: (uncontrolled resource consumption)
is one example of an unmitigated Denial of

Service threat

¥ SAFECode

m

1000 | Driving Security and Integrity

of the Threat Model a
del itself will serve as a clear ro

tive of the re;
Threat

fication, containing enough informatil
each threat and mitigation can be verifieg

During verification, the Threat Model and
mitigated threats, as well as the annotatd
tectural diagrams, should also be made a
to testers in order to help define further t|
and refine the verification process. A revid]
Threat Model and verification results shol
made an integral part of the activities reg

o0 Driving Security and I

Fundamental Practices for
Secure Software Development
2ND EDITION

A Guide to the Most Effective Secure
Development Practices in Use Today

February 8,20m

Epiror Stacy Simpson, SAFECode

AuTHORS
Mark Belk, Juniper Networks Mikko Saario, Nokia
Matt Coles, EMC Corporation Reeny Sondhi, EMC Corporation

Cassio Goldschmidt, Symantec Corp.
Michael Howard, Microsoft Corp.
Kyle Randolph, Adobe Systems Inc.

Izar Tarandach, EMC Corporation
Antti Vaha 13, Nokia
Yonko Yonchev, SAP AG

declare code complete.

An example of a portion of a test plan derived from
a Threat Model could be:
Threat

Design Mitigation

Identified Element(s)
Session Ensure ran- Collect session
Hijacking dom session | identifiers
identifiers of | over a number
appropriate | of sessions
length and examine
distribution and
length
Tampering | Process A Use SSLto Assert that
withdata |onserverto |ensurethat | communica-
intransit | ProcessBon | dataisn't tion cannot
client modifiedin | be established
transit without the use
of SSL

©2012 MITRE

Common Cybersecurity Vulnerabilities in

Industrial Control Systems

May 2011

Homeland
2 Security

INL/EXT-10-18381

Vulnerability Analysis of
Energy Delivery Control
Systems

Control Systems Security Pr

Naticnal Cyber Security Di

SECURE CONTROL

RTU/PLC

Field Locations

Backup
Control
Center

Remote
ICCP/other business
PEERS

—

External
Communications
Infrastructures

N . TR——

=5
Dedicated /Q)J Busmm com DB/Historian security

Q
External VPN
Access

September 2011

Idaho National Laboratory
Idaho Falls, Idaho 83415
http://www.inLgov

Prepared for the
U.S. Department of Energy
Office of Electricity Delivery and Energy
Reliability
Under DOE Idaho Operations Office
Contract DE-AC07-0SID14517

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Aliance

Control Systems
Vulnerabilities
— DOE & DHS

Level 4

Enterprise Systems:
Business Planning
and Logistics /
Engineering Systems

‘-!‘
%‘

o

59 orate Network

ICS Web

ICS Business _a
Application Client Application Client 1

Business
Servers

Level 3

(

Operations Management:

System Management /
Supervisory Control

W 6

Replicated Web Server

Database

SYSTEM/ENTERPRISE ARCHITECTURE

Data
Acquisition Applications .. . =~ Database Configuration HMI Engineering
Computers Workstation

‘@@@9@%@@

(CONTROL SYSTEM LAN
External

Authentication
Server

Web Server DMZ_{)

Q: IDS Sensor

Level 2

Supervisory Control Equipment:
Supervisory Control Functions /

Site Monitoring and

ICCP Server
OPC Server
Information Server
Application Server

Remote
Vendor or
Engineer

Access

Local Display
s E Real-time o)
Supervisory Ditabase Communications
Control Local Display Processor
(5ontrol Network o
Level 1

Control Equipment:

- .

T

Protection and
Local Control Devices
Distributed PLC
Control
e (7O Network
Equipment Under Control: 1 I
Sensors and Actuators
¥ =
. - Relay
Temperature Pressure
Sensor Sensor

WVulnerability Analysis of

DOE/INL

_ Common

Vulnerabilities...

Table 8. Common vulnerabilities associated with insecure SCADA code design and

i_mBlemematicm.

Weakness
Classification

I Common Vulnerability

CWE-19: Data Handling

CWE-228: [er Handling of Syntactically Invalid
Structure

CWE-195: Sgmed to Unsigned Conversion Error

CWE-198: Ufe of Incorrect Byte Ordering

CWE-119: Failure to
Constrain Operations
within the Bounds of a
Memory Buffer

CWE-120: Bfffer Copy without Checking Size of Input
“Classic Buffer Overflow™)

CWE-121: Sfhck-based Buffer Overflow

CWE-122: -based Buffer Overflow
CWE-125: Oft-of-bounds Read

—

CWE-129: per Validation of Array Index
CWE-131: Irforrect Calculation of Buffer Size

CWE-170:

o

pper Null Termination

CWE-190: Infleger Overflow or Wraparound

CWE-680: Infleger Overflow to Buffer Overflow

CWE-398: Indicator of
Poor Code Quality

CWE-454: Ellernal Initialization of Trusted Variables or Data
Stores

CWE-456: lesing Initialization

CWE-457: Ulc of Uninitialized Variable

CWE-476: NULL Pointer Dereference

CWE-400: Ugcontrolled Resource Consumption (“Resource
Exhaustion™)

CWE-252: Ulchecked Return Value

CWE-690: Ufchecked Return Value to NULL Pointer
Dereference

CWE-772: blssing Release of Resource after Effective
Lifetime

CWE-442: Web
Problems

CWE-22: Im@iroper Limitation of a Pathname to a Restricted
Directory (“Hith Traversal™)

CWE-79: Fafjure 1o Preserve Web Page Structure (“Cross-site
Scripting™)

CWE-89: Fafure to Preserve SQL Query Structure (“SQL
Injection™)

CWE-703: Failure to
Handle Exceptional
Conditions

CWE-431: E\:lssi_ng Handler

CWE-248: Ulcaughl Exception

CWE-755: I per Handling of Exceptional Conditions

CWE-390: Ditection of Error Condition Without Action

‘Describe

DHS ICS
Common
Vulnerabilities...

assessments. Users may apply the tool to site-
specific configurations, based on user created
diagrams and selection of specific standards for
each assessment.

CSET is a desktop software tool that guides
users through a step-by-step question and answer
process to collect facility-specific control and
enterprise network information. The questions
address topics such as hardware, software,
administrative policies, and user obligations. After
the user responds to the questions, the tool
compares the information provided to relevant
security standards and regulations, assesses overall
compliance, and provides appropriate
recommendations for improving the system’s
cybersecurity posture. The tool pulls its
recommendations from a database of the best
available cybersecurity practices, which have been
adapted specifically for application to control
system and enterprise networks and components.
Where appropriate, recommendations are linked to
a set of prioritized actions that can be applied to
remediate specific security vulnerabilities.

CSET requirements were derived from widely
accepled standards such as:

+ DHS Catalog of Control Systems Security:
Recommendations for Standards Development
Revisions 4 and 6

+ NIST SP 800-53: National Institute of
Standards and Technology (NIST), Special
Publication (SP) 800-53, Recommended
Security Controls for Federal Information
Systems, Revisions 0, 1, 2, and 3 Final Public
Draft, June 2009

+ NIST SP 800-82: National Institute of
Standards and Technology, SP 800-82, Guide
to Industrial Control Systems (ICS) Security,
Final Public Draft, September 2008

+ ISO/EC 15408 (The Common Criteria):
International Organization of Standards/
International Electrotechnical Commission,
Version 3.1, September 2007

+ DoDI 8500.2: US Department of Defense
(DoD) Instruction Number 8500.2,
“Information Assurance (IA)
Implementation,” February 6, 2003

« NERC CIP-002 through CIP-009: North
American Electric Reliability Corporation
(NERC) Critical Infrastructure Protection
(CIP) (http://www.nerc.com/), Effective
June 1, 2006.

2.3.1.1 Common CSET Findings

The CSSP assisted in 50 CSET self-
assessments in 2010 at owners and operations
facilities within the 18 critical sectors, and in
multiple CS2SAT self-assessments between 2006
and 2009. The CSSP provides the following
benefits during the CSET evaluations:

e Cyber Security Awareness Briefing

e CSET training and demonstration

e “Over-the Shoulder” guidance to asset owners
inusing CSET

e Collective knowledge of common issues and
good practices to identify vulnerabilities and
mitigate risk

* Review assessment findings and provide
mitigation techniques.
Table 4 summarizes the issues commonly

identified as cybersecurity gap by ICS asset

owners during onsite CSET assessments.

2.4 Compilation of ICS
Vulnerability Information

DHS ICS risk reduction activities have
gathered vulnerability information from many
different types of ICS components, used by the
multiple types of ICS. Information from different
assessment approaches and ICS types provides a
more complete picture of the security risks to ICS.
Common types of vulnerabilities identified
through CSSP assessments, ICS-CERT activities,
and CSET self-assessments have been named and

drawing conclusions from the data presented in
this report.

d. http://cwe.mitre.org/

using CWE... 7

Smart Grid Interchange Requirements Analysis
and Standards Conformance Project

White Panr

Automating Smart Grid Security

Applications of the Security Content Automation Protocol to the Smart
Grid for Risk Management Activities

Date: December 7, 2011
Version: 1.4

Prepared for
National Institute of Standards and Technology
Under Contract Number: S813110CNO101

Then we provide a number of specific technical recommendations that could be undertaken
to promote the use of SCAP to automate security processes in the Smart Grid and Industrial
Control Systems more broadly. These recommendations include:
Adopt the Asset Identification Format for Smart Grid Component Inventories
Enhance ICS- LI:RT becunty Advisories with Vulnerability Scoring

; prable Compliance Reporting
Utilize (_,nmmon I‘latform l:numerauon
Utilize Common Vulnerability Enumeration
l:.xtend OVAL Support to Smart Grid Systems
ontinuous Monitoring
Develup Security Checklists for Smart Grid Systems

5 Conclusions

The SCAP protocol was developed with the purpose of helping organizations maintain
secure configurations, managing the technical aspects of assessing system compliance with
security requirements, measuring security, automating security operations and
communicating about vulnerabilities. These issues were identified in the IT security
domain, but there is a considerable need to address these challenges in the Smart Grid and
ICS domains as well. Security automation can help asset owners obtain a clear

understanding of the security status of their systems, and SCAP provides a technical
framework for doing this.

lncluding ICS related vulnerabilities in the CVE and ICS related platforms in the CPE is

; in the Smart Grid an omains. The use
as development of XCCDF-expressed fhecklists and automat
systems are more challenging, but as the state of security aware I

it is hoped that the field of Smart Grid and ICS security can follow recent dev elopments in
the IT security domain to realize the benefits of security automation.

©2012 MITR&3

‘OO

Code Review Introduction - OWASP

@E)v @ @ (‘ http: / /www.owasp.org/index.php/Code_Review_Introduction -{_} v\ g.‘lv OWASP Q‘\
Log in M
' o N em—— |
O“}!s E:P | Go | | Search
The Open Web Application Security Project
Page Discussion View source History
Sangation Code Review Introduction
» Home |
r News Main ‘
» OWASP Projects ««Code Review Guide History«« (Table of Contents) »»Preparations»
» Downloads
¥ Local Chapters Contents [hide]
» Global Committees 1 Introduction
» AppSec Job Board 1.1 Why Does Code Have Vulnerabilities? :
» AppSec Conferences 1.2 What is Security Code Review?
» Presentations
» Video
» Press
» Get OWASP Books "

b
»
»
»

- v w

- v v v v w w w

-

»
»

Get OWASP Gear
Mailing Lists
About OWASP
Membership

Reference

How To...
Principles
Threat Agents
Attacks
Vulnerabilities
Controls
Activities
Technologies
Glossary
Code Snippets
.NET Project
Java Project

Language

English
Espariol

Introduction
Code review is probably the single-most effective technique for identifying security flaws. When used together with automated tools and manual penetration testing, code review can significantly increase
the cost effectiveness of an application security verification effort.

This guide does not prescribe a process for performing a security code review. Rather, this guide focuses on the mechanics of reviewing code for certain vulnerabilities, and provides limited guidance on
how the effort should be structured and executed. OWASP intends to develop a more detailed process in a future version of this guide.

Manual security code review provides insight into the "real risk” associated with insecure code. This is the single most important value from a manual approach. A human reviewer can understand the

Why Does Code Have Vulnerabilities?

MITRE has catalogued almost 700 different kinds of software weaknesses in their CWE project. These are all different ways that software developers can make mistakes that lead to insecurity. Every one
of these weaknesses is subtle and many are seriously tricky. Software developers are not taught about these weaknesses in school and most do not receive any training on the job about these problems.

These problems have become so important in recent years because we continue to increase connectivity and to add technologies and protocols at a shocking rate. Our ability to invent technology has

seriously outstripped our ability to secure it. Many of the technologies in use today simply have not received any security scrutiny.

There are many reasons why businesses are not spending the appropriate amount of time on security. Ultimately, these reasons stem from an underlying problem in the software market. Because
software is essentially a black-box, it is extremely difficult to tell the difference between good code and insecure code. Without this visibility, buyers won't pay more for secure code, and vendors would be
foolish to spend extra effort to produce secure code.

Nevertheless, we still frequently get pushback when we advocate for security code review. Here are some of the (unjustified) excuses that we hear for not putting more effort into security:
"We never get hacked (that I know of), we don't need security”

nOO6 The Web Application Security Consortium / Threat Classification Taxonomy Cross Reference View)

ﬂ, m (X) n ﬂ http://projects.webappsec.org/w/page/13246975 /Threat-Classification-Taxonomy-Cross-Reference-View

The Web Application Security Consortium 'y login help HP
[/Wiki - Pages & Files Search this workspace
VIEW »

Threat Classification Taxonomy Cross Reference View

last edited by £ Robert Auger 10 months, 3 weeks ago () Page history ' Check for plagiarism

© Tags: Threat Classification

Threat Classification 'Taxonomy Cross Reference View'

This view contains a mapping of the WASC Threat Classification's Attacks and Weaknesses with MITRE's Common Weakness Enumeration, MITRE's Common Attack Pattern Enumeration and :A;.;rmeds . "
Classification, OWASP Top Ten 2010 RC1 (original mapping with OWASP Top Ten from Jeremiah CGrossman & Bill Corry) and SANS/CWE and OWASP Top Ten 2007 and 2004 (original mapping + Distributed Open Proxy Honeyoats
from Dan Cornell, Denim Group) + Script Mapping
) :) + The Web Security Glossary
WASCID Name CWEID CAPEC | SANS/CWE Top 25 [DWASP Top Ten 2010 OWASP Top Ten 2007 | OWASP Top + Web Aplication Firewall Evaluation
D 2009 Ten 2004 Ctera
I | | + Web Application Security Scanner
WASC-01 Insufficient Authentication b42 - Broken A7 - Broken A3 - Broken Evaluation Criteria
thentication and Authentication and Authentication + Web Application Security Statistics
ession Management, Session Management, | and Session + Web Hacking Incidents Database

WASC Threat Classification
4 - Insecure Direct A4 - Insecure Direct management, v O el

Dbject References Object Reference A2 - Broken WASC Project Leaders

Access Control + Robert Auger
WASC-02 Insufficient Authorization 4 - Insecure Direct 10 - Failure to A2 - Broken + Ryan Banett
Dbject References, A7 Restrict URL Access, A4 | Access Control : %m
Failure to Restrict - Insecure Direct o Ofer Shezaf
RL Access Object Reference + Brian Shura
WASC-03 Integer Overflows))
WASC Main Website
WASC-04 Insufficient Transport Layer Protecti@h 10 - Insufficient A9 - Insecure « http:/ /www.webappsec.ora/
ransport Layer Communications
otection WASC Mailing Lists

L 1 + http://lists.webappsec.org/
WASC-05 Remote File Inclusion A3 - Malicious File
Execution WASC on Twitter

+ htp: / /twitter.com/wascupdates

WASC-06 Format String

WASC-07 Buffer Overflow AS - Buffer Join us on Linkedin!
Overflows + http://www.linkedin.com
) : [aroupstqid=
WASC-08 Cross-site Scripting - Cross-Site Al - Cross Site A4 - Cross Site roupsaid=83436
ripting Seripting (X5S) Scripting (X55)
WASC-09 Cross-site Reguest Forgery 5 - Cross-Site AS - Cross Site Request Recent Activity ® b
equest Forgery Forgery (CSRF) 3

. Insufficient Data Protection Working

AWACE, 10 DNanisl af Camden aten Do Al a e AQ Diawml

CWE Compatibility & Effectiveness Program

(launched Feb 2007)

O 0 0 CWE - CWE Compatibility

-i @ (__F http: //cwe.mitre.org/compatible /index.html @ (- Google)
—Am AFC Home MIl Home Search¥ Map/Ph/Weather/Travelv Bob's Bookmarks vy CVEnOVAL¥ OVAL shared SPA gtvy Log fSPA =
WE Common Weakness Enumeration
* A community-developed dictionary of common software weaknesses
CWE Compatibility Section Contents
Compatibility

SECURITY DATABASE (DM Analytics VERACODE o2 FORTIFY
technologies SecurityReason Astyran Pte Ltd q rorTwane

- Secure Your Web Code

)
Kiocwork S PARASOFT EMC C SkillBridge 0 Cover lty

QCENZIC @GRAMI\E{I’ECEI ’S 1ant2cunENUM|cuudefeerB:a (|SC)2 R@
|PA SofCheck ZEFE. e

N . WatCHIIRe' Y w OUNCE Laes EC- ﬂmlnl:ll

HPROA |11 8 I NG LDRA e o) e

Orgamzatlons Participating cwe m|tre orglcompatlblel I

All organizations participating in the CWE

Compatibility and Effectiveness Program are TOTALS

listed below, including those with CWE- Organizations Participating: 33
Compatible Products and Services and those Products & Services: 60
with Declarations to Be CWE-Compatible.

Products are listed alphabetically by organization name:
©2012 MITRE

he Web Malware Experts

[-

we -—
|- . ooy

~

[HI=ZLIA HHE

y58 AHE5i0, A0E

EHFE= ME2 S
=9l0] ZBS 2ok 57K] AR ofelet BLICE

3 ma| wHe

HE]

ﬁﬂ' ADEYO|)

@) coverity
249

2l 2HE zy ousy

s2auzey

e 28 susase w#ED" 6 E|ZE ausnuy)

| @
fa a8

CoveritybZ={FB L T.

Oresx21080 FHBELBH LLRKEE)

V7 NI IPARREEBEICRETS 5ATY TRUTORYTY,

o AFE¥ Y vrrozr)

Korean

Japanese

@) coverity

BiFT I

e fBIE mrenom. H:E"‘»

&

Project 1

Project 2

salhveashs

6 LR=—F xﬁamﬁwi)

Coverity” Data Sheet

¢) coverity’

Coverity Coverage for Common Weakness

Enumeration (CWE): Java

CWE Coverage —

pral BAD EQ

252 CHECKED RETURN Coverity’ Data Sheet

GUARDED_BY_VIOLATION

INDIRECT_GUARDED._BY.
386 VIOLATION

NON_STATIC GUARDING STATIC
VOLATILE_ ATOMICITY
382 DC.CODING_STYLE
BAD_OVERRIDE

DC.EXPLICIT_DEPRECATION

{) coverity’

Coverity Coverage For Common Weakness
Enumeration (CWE): C/C++

Implemented...

CWE IDs mapped to Klocwork Java issue ypes - current

types

From current
CWE IDs mapped to Klocwork Java issue lypes.

See also Detected Java Issues.

hitp:Hwww klocwork com/products/documentationfcurren. .

CWE IDs mapped to Klocwork Java issue

DC.GC ID Cove

MUTABLE_GOMPARISON

398 MUTABLE_HASHCODE

TAINTED SCALAR

(O CENZIC

WWW.CENZIC.com | (866) 4-CENZIC (866-423-6942)

Cenzic Product Suite is CWE Compatible

Cenzic Hailstorm Enterprise ARC, Cenzic Hailstorm Professional and Cenzic ClickToSecure are
compatible with the CWE standard or Common Weakness Enumeration as maintained by Mitre
‘Corporation. Web security assessment results from the Hailstorm product suite are mapped to
the relevant CWE ID's providing users with i ion to classify and describe
common weaknesses found in Web applications.

For additional details on CWE, please visit: http://cwe.mitre.orgfindex html
The following is a mapping between Cenzic's SmartAttacks and CWE ID's:

Cenzic
SmartAttack
Name
1 Application
Exception
Application
Exception (WS)
Application Path
Disclosure
4 Authentication CWE-89: Failure to Sanitize Data into SQL Queries (aka
Bypass 'SQL Injection’) (rough match)

CWE ID/s

CWE-388: Error Handling
CWE-388: Error Handling

CWE-200: Information Leak (rough match)

5 Authorization CWE-285: Missing or Inconsistent Access Control, CWE-425:
Boundary Direct Request (‘Forced Browsing')
Blind SQL CWE-89: Failure to Sanitize Data into SQL Queries (aka

6 P . iaction’
Injection SQL Injection’)

7 Blind SQL CWE-89: Failure to Sanitize Data into SQL Queries (aka
Injection (WS) 'SQL Injection’)

8 Browse HTTP CWE-200: Information Leak

from HTTPS List
9 Brute Force Login CWE-521: Weak Password Requirements
10 Buffer Overflow CWE-120: Unbounded Transfer ('Classic Buffer Overflow')

11 mz‘;r Overflow CWE-120: Unbounded Transfer ('Classic Buffer Overflow')
12 Check Basic Auth CWE-200: Information Leak
over HTTP
Check HTTP ClWE-BSO: Trusting HTTP Permission Methods on the Server
13 Side
Methods
Cenzic CWE Brochure | October 2009 1

Campary Canfidariiel
iR, HalSor T ared CRKTISre® ars rsisred Tademaks of Cirde, [,

The Coric koga, Hstorm . and GavShis sretwdemrks o Car, b
8 2009 Cona, I A rightsreserved.

ed scaiar valus

Alter control flow
Arbitrary control of & resoun

Arbitrary code execution

Arbitrary code exscution
Alter control flow

CWE IDs mapped to Klocwork C and C++ issue types/ja -...

escription

htp://www.klocwork

CWE IDs mapped to Klocwork C and C++
issue typesl/ja

From current

< CWE IDs mapped to Klocwork C and C++ issue types
CWE IDs mapped to Klocwork C and C++ issue types/ja

Z DAt D% Detected C and C++ Issues.

goes to native code

tampering
ction

Working Directory

Stored XSS)

0 (Reflected XSS)

Stored XSS)
(Reflected XSS}

Denial of sarvice

Unauthorized code executs

Deniat of sarvice

10of7

(http://cwe.mitre.org
/data/definitions
/20.html)

CWE ID B
ABV.TAINTED RARFEAAICLBNY T T F—/N—20O—
20 SV.TAINTED.GENERIC RIGHEX F5] 7 — X DEMA

SV.TAINTED.ALLOC_SIZE X E'JHIU X TIZHS BRI DEHD

SV.TAINTED.CALL.INDEX_ACCESS =BI#IF-U'H U (CH L B RIRFE
BHORY VTV TREL TO/ER

information from the
ints

lorms: validate method

lorms: inconsistent validate

22
(http://cwe.mitre.org
/data/definitions

/22 html)

SV.CUDS MISSING_ABSOLUTE_PATH 7 77)L DO — X T D43
INZDFMER

e Splitting

73
(http://cwe.mitre.org
/data/definitions
/73.html)

SV.CUDS.MISSING_ABSOLUTE_PATH 7 77)LDO— N T D4t
INZDFRMER

74
(http://cwe.mitre.org
/data/definitions

/74 html)

SV.TAINTED.INJECTION YV N /22173y

77
(http://cwe.mitre.org
/data/definitions

/77 html)

SV.CODE_INJECTION.SHELL_EXEC ¥/ T /LRIFTADITYY N 1~
D173y

bx used for array access

2/26/11 10:35 AM

78
(http://cwe.mitre.org
/data/definitions
/78.html)

NNTS.TAINTED sRigiE 1—FAANREDNY T 7 F—/\—20O—
- 3F NULL 3055
SV.TAINTED.INJECTION OV Y K 4> 1 723y

88
(http://cwe.mitre.org

SV.TAINTED.INJECTION YV K 4> 1723Y
NNTS.TAINTED FK#EEI—SFANNRED/NNY T 7 F—/N\—270—

2/26/11 10:34 AM

©2012 MITRE

Stockh

=il COMPUTERW

U.S. Rolls Out Plal

HOME NEWS

TECHNOLOG|

Fox New

LATEST NEWS

Fair&

Re

TUESDAY, 28 JUNE 2011

ASB Bank, Potentia and Hairy

Lamon pick up 2011 CIO Associated Press O u ro
US rolls out plan to prg
|T and markotlng are a killer LOLITA C. BALDOR , 06.27.11

Shows

US rolls out plan to protect busi PUBLIC MEDIA®

Marketplace’

Sections Topics Podcasts

Department of Homeland Security wants to help

Video ForbesWoman CEO Network

Efyemaﬂ)btgtnuﬂimeﬁ i

By John Moe

N U.S. rolls

0 Comments

HOME

If you have a
about security

Cu

Most emailg

B Some Fl{
urgent-c
will be rq
post prig
common|)

B Mostex] P
home in (3 Email
Hillsbora
estate m
got a litf]

&l Convicte
driver w

license 4 Hackers used |
Tampa

l'-.:' Save

used in an SQI

| GAVADIAN. BUSINESS

Home News & Markets Blogs & Analysis

l__, security comp1__

HOT TOPICS: Leadership Q&A Retirement Business Briefings

Topics News & Markets

DHS rolls out plan to help protect small
from hackers
By Lolita C. Baldor, The Associated Press | June 27, 2011

Like 2 Share

WASHINGTON - Businesses facing a growing threat of cyberattacky

more tools to protect themselves and harden their Internet sites agaimsrracrers:

Home : Sci-Tech : U.S. launches plan to protect business websites

U.S. launches plan to protect business
websites

View Larger Image

A A | Email | Print
Recommend Sign Up to see what your friends recommend.

The Associated Press
Date: Monday Jun. 27, 2011 910 PM ET

WASHINGTON — American businesses facing a growing threat of cyberattacks against
their websites now will have more tools to protect themselves and harden their Internet
sites against hackers.

MITRE

Rank

Score

ID

Name

[1]

93.8

CWE-89

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

[2]

83.3

Improper Neutralization of Special Elements used in an OS Command ('0S Command
Injection’)

[3]

79.0

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

[4]

77.7

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

[5]

76.9

Missing Authentication for Critical Function

[6]

76.8

Missing Authorization

[7]

75.0

Use of Hard-coded Credentials

(8]

75.0

Missing Encryption of Sensitive Data

[9]

74.0

Unrestricted Upload of File with Dangerous Type

[10]

73.8

Reliance on Untrusted Inputs in @ Security Decision

[11]

73.1

Execution with Unnecessary Privileges

[12]

70.1

Cross-Site Request Forgery (CSRF)

[13]

69.3

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[14]

68.5

Download of Code Without Integrity Check

[15]

67.8

Incorrect Authorization

A

=
L~y

s
)

2
A

YU
e)
V7 A
/)
i
% Ty a0

N\)
L4AND S50

up from 2
up from 9
same 0
down from 1
up from 19
split of prior #5
up from 11

up from 10
down from 8
down from 6
new entry
down from 4
down from 7
up from 20
split of prior #5

MITRE

[16] [66.0 |CWE-829 (Inclusion of Functionality from Untrusted Control Sphere new entry na
[17] [65.5 |CWE-732 |Incorrect Permission Assignment for Critical Resource up from 21 +4
[18] [64.6 |CWE-676 |Use of Potentially Dangerous Function new entry n/a
[19] (64.1 |CWE-327 |Use of a Broken or Risky Cryptographic Algorithm up from 24 +5
[20] |62.4 [CWE-131 |Incorrect Calculation of Buffer Size down from 18 -2

[21] [61.5 |CWE-307 |Improper Restriction of Excessive Authentication Attempts new entry n'a
[22] |61.1 [CWE-601 |URL Redirection to Untrusted Site ('Open Redirect') up from 23 +1

[23] |61.0 |CWE-134 (Uncontrolled Format String new entry na
[24] |60.3 |CWE-190 |Integer Overflow or Wraparound down from 17 & |

[25] |59.9 |CWE-759 |Use of a One-Way Hash without a Salt new entry na

MITRE Insecure Interaction Between Components

[Rank | CWE ID | Name
[1] |CWE-89 |Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

[2] |CWE-78 |Improper Neutralization of Special Elements used in an 0S Command ('OS Command Injection’)

|[4] |M ‘Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[9] |CWE-434 |Unrestricted Upload of File with Dangerous Type

[12] |CWE-352 |Cross-Site Request Forgery (CSRF)

[22] |CWE-601 [URL Redirection to Untrusted Site (‘Open Redirect') Risky Resource

[Rank | CWEID | name Management
‘[3] |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")

‘[13] |CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
‘[14] |CWE—494 |Download of Code Without Integrity Check

‘[16] |CWE—829 |Inclusi0n of Functionality from Untrusted Control Sphere

[18] CWE-676 ||Use of Potentially Dangerous Function

[20] CWE-131 ||Incorrect Calculation of Buffer Size

23] |CWE-134 |Uncontrolled Format String

Porous Defenses [24] |CWE-190 |Integer Overflow or Wraparound
| Rank | CWEID | Name
& |CWE-306 [Missing Authentication for Critical Function
|61 |CWE-862 ||Missing Authorization
(71 |CWE-798 |Use of Hard-coded Credentials
[8] CWE-311 Missing Encryption of Sensitive Data
[10] CWE-807 Reliance on Untrusted Inputs in a Security Decision
|[11] |CWE-250 |Execution with Unnecessary Privileges
[15] CWE-863 Incorrect Authorization
[17] CWE-732 Incorrect Permission Assignment for Critical Resource
|[19] ICWE-327 |Use of a Broken or Risky Cryptographic Algorithm
|[21] |CWE-307 |Improper Restriction of Excessive Authentication Attempts
|[25] |CWE-759 |Use of a One-Way Hash without a Salt ©20

Key Practices for
Mitigating the Most
Egregious Exploitable
Software Weaknesses

Software Assurance Pocket Guide Series:
Development, Volume II
Version 2.2, June 26, 2012 (Draft)

L
S
A
& BUILDING SECURITY IN

N

0

SOFTWRRE
ASSURANCE |

Software Assurance (SwA) Pocket Guide Resources

Thas is a resource for “getting started” in selecting and adopting relevant practices for engineenng, developing, and
delivering secure software. As part of the Software Assurance (SwA) Pocket Guide series, this resource is offered

for informative use only; it 1s not intended as directive or presented as being comprehensive since it references and
summarizes material in the source documents and on-line resources that provide detailed information. When referencing
any part of this document, please provide proper attribution and reference the source documents, when applicable.

This volume of the SwA Pocket Guide series focuses on key practices for mitigating the most egregious exploitable
software weaknesses. It identifies mission/business risks attributable to the respective weaknesses, it identifies
common attacks that exploit those weaknesses, and provides recommended practices for preventing the
weaknesses. It provides insight for how software weaknesses are prioritized to guide training, development and
procurement efforts.

At the back of this pocket guide are references, limitation statements, and a listing of topics addressed in the SwA
Pocket Guide series. All SwA Pocket Guides and SwA-related documents are freely available for download via the SwA
Community Resources and Information Clearinghouse at _http://buildsecurityin.us-cert.gov/swa .

BUILDING SECURITY IN

SOF TWARE
SSURANCE |

Acknowledgements

The SwA Forum and Working Groups function as a stakeholder mega-community that welcomes additional participation
in advancing software security and refining SwA-related information resources that are offered free for public use. Input
to all SwA resources is encouraged. Please contact Software Assurance@ dhs . gov for comments and inquiries.

The SwA Forum 1s composed of government, industry, and academic members. The SwA Forum focuses on
incorporating SwA considerations in educatoin, acquisition, and development processes relative to potential risk
exposures that could be introduced by software and the software supply chain.

Participants in the SWA Forum's Processes & Practices Working Group collaborated with the Technology, Tools and
Product Evaluation Working Group in developing the material used in this pocket guide as a step in raising awarcness on
how to incorporate SwA throughout the Software Development Life Cycle (SDLC).

Lacking common charactenzation of exploitable software constructs and how they could be attacked with associated
mitigation practices previously presented one of the major challenges to realizing software assurance objectives. As part

Key Practices for M & the Most Egregia

Software Weaknesses 1

» "Fundamental Practices for Secure Software Development, 2ND EDITION, A Guide to the Most Effective
Secure Development Practices in Use Today", SAFECode, February 8, 2011 at hitp:/iwww safecode.orgl
publications/SAFECode_Dev_Practices021 | pdf

Background

The 2011 CWE/SANS Top 25 Most Dangerous Programming Errors is a consensus list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often casy to find, and
casy to exploit. They are dangerous because they will frequently allow attackers to completely take over the software,
steal data, or prevent the software from working at all.

The list is the result of collaboration between the MITRE CWE team, many top software security experts in the US

and Europe, and the SANS Institute. It leverages experiences in the development of the SANS Top 20 attack vectors (
htp://www sans.org/top20/), MITRE's Common Weakness Enumeration (CWE) (http://ewe mitre.org/), and MITRE's
Common Attack Pattern Enumeration and Classification (CAPEC) (https:/capec.mitre org/). With the sponsorship and
support of the US Department of Homeland Security's National Cyber Secunity Division Software Assurance Program,
MITRE maintains the CWE and CAPEC websites, presenting detailed deseriptions of the top 25 programming errors
along with authonitative guidance for mitigating and avoiding them. The CWE site also contains data on more than 800
additional programming errors, design errors, and architecture errors that can lead to exploitable vulnerabilities. See
CWE Frequently Asked Questions at http://cwe.mitre.org/about/fag.html .

A goal for the CWE Top 25 list 15 to stop vulnerabilities at the source by educating programmers on how to eliminate
all-too-common mistakes before software is even shipped. The list serves as a tool for education and awareness to help
programmers prevent the kinds of vulnerabilities that plague the software industry. Software consumers can use the same
l1st to help them to ask for more secure software. Finally, software managers, testers, and CIOs can use the CWE Top 25
list as a means for selecting the best tools and services for their needs and as a measuring stick of progress in their efforts
to secure their software.

Top 25 Common Weaknesses

Table 1 provides the Top 25 CWES organized into three high-level categories that contain multiple CWE entries:
1. Insecure Interaction Between Components
2. Risky Resource Management
3. Porous Defenses

|Table 1 - Top 25 Common Weakness Enumeration (CWE) |
Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is seat and received between separate components, modules, programs,
processes, threads, or systems.

CWE Description
CWE-78 | Improper Neutralization of Special Elements used in an OS Command ('0OS Command Injection’).

CWE-79 | Improper Neutralization of Input During Web Page Generation ('Cross-site Seripting’).

CWE-89 | Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’).

CWE-352 | Cross-Site Request Forgery (CSRF).

CWE-434 | Unrestricted Upload of File with Dangerous Type.

CWE-601 | URL Redirection to Untrusted Site (‘Opea Redirect’).

4 Seftware Asswance Pocket Guide Series:
Development, Version 2.2, June 26, 2012 (Draf1)

Risky Resource Management
These weaknesses ase related to ways in which software does not propeely nianage the creation, usage, transfer, of destruction of

Important system resources.

CWE-2? | Improper Limitation of a Pathname to & Restricted Directory (Path Traversal).
CWE-120 | Buffer Copy without Checking Size of laput (Classic Buffer Overflow’),
CWE-131 | Incorrect Calculation of Buffer Size.
CWE-134 | Uncoatrolled Format String.
CWE-190 | Integer Overflow or Wraparound.
CWE-4% | Download of Code Without Integrity Check.
CWE-676 | Use of Potentially Dangerous Function.
Inclusion of Functionality from Untrusted Control Sphere.

Porous Defenses
CWE Description
Exccution with Unnecessary Privileges.
CWE-30¢ | Missing Authentication for Critical Function.
CWE-X7 | Improper Restriction of Excessive Authentication Attempts,
CWE-311 | Missing Encryption of Sensitive Data.
CWE-327 | Use of & Broken or Risky Crypographic Algorithm.
CWE-732 | Incorrect Permission Assignment for Critical Resource.
CWE-759 | Use of a One-Way Hash without & Salt.
CWE-T98 | Use of Hard-coded Credentials.
CWE-R07 | Reliance on Untrusted Inputs in & Security Decision,
CWE-862 | Missing Authorization.
CWE-863 | Incorrect Authorization.

Selection of the Top 25 CWEs

The Top 25 CWE list was first developed at the end of 2008 and is updated on a yearly basis. Approximately 40
software security experts provided feedback, including software developers, scanning tool vendors, security consultants,
government representatives, and university professors. Representation was international. [ntermediate versions were
created and resubmitted to the reviewers before the list was finalized. More details are provided in the Top 25 Process
page at http:/fowe. mitre org/top2S/process.himl .

To help characterize and priontize entries in the Top 25 CWE hst, a threat model was developed that identafied
an attacker with solid technical skills and determined enough to invest some time into attacking an organization.
Weuknesses in the Top 25 were selected using two primary criteri:

» Weakness Prevalence: how often the weakness appears in software that was not developed with security
inegrated into the software development life cycle (SDLC).

» Consequences: the typical consequences of exploiting & weakness if it is present, such as unexpected code
execution, data loss, or denial of service.
Prevalence was determined based on estimates from multiple contributors to the Top 25 list, since appropriate statistics
were not readily available.

With these critersa, future versions of the Top 25 CWEs will evolve to cover different weaknesses. Other CWES that
represent significant nsks were listed as being on the cusp, and they can be viewed at http://ewe.mitre.org/ .

Key Practices for Mingatig the Most Egregious Expéouabls Sofrware Weaknessss 5

Information about the Weaknesses

The primary audience for CWE information is intended to be software programmers and designers. For each individual
CWE entry, additional information 1s provided.

CWE ID and name.

Supporting data fields: supplementary information about the weakness that may be useful for decision-makers to
further prioritize the entries.

Discussion: Short, informal discussion of the nature of the weakness and its conseguences.

Prevention and Mitigations: steps that developers can take to mitigate or eliminate the weakness. Developers
may choose one or more of these mitigations to fit their own needs. Note that the effectiveness of these
techniques vary, and multiple techniques may be combined for greater defense-in-depth.

Related CWEs: other CWE entrics that are related to the Top 25 weakness. Note: This list is illustrative, not
comprehensive.

Related Attack Patterns: CAPEC entries for attacks that may be successfully conducted against the weakness.
Note: the list is not necessarily complete.

See hitp://ewe mitre.org for the additional supporting information on each CWE.

Other Supporting Data Fields in CWEs

Each Top 25 entry includes supporting data fields for weakness prevalence and consequences. Each entry also includes
the following data fields.

Attack Frequency: how often the weakness occurs in vulnerabilities that are exploited by an attacker.
Ease of Detection: how casy it is for an attacker to find this weakness.
Remediation Cost: the amount of effort required to fix the weakness.

Attacker Awareness: the likelihood that an attacker is going to be aware of this particular weakness, methods
for detection, and methods for exploitation.

Associated Mission/Business Risks and Related Attack Patterns

For each common weakness in software, there are associated nisks to the mission or business enabled by the software.
Moreover, there are common attack patterns that exploit those weaknesses.

Attack patterns are powerful mechanisms that capture and communicate the attacker’s perspective. They are descriptions
of common methods for exploiting software. They derive from the concept of design patterns applied in a destructive
rather than constructive context and are generated from in-depth analysis of specific real-world exploit examples. To
assist in enhancing security throughout the software development hifecycle, and to support the needs of developers,
testers and educators, the CWE and Common Attack Pattern Enumeration and Classification (CAPEC) are co-
sponsored by DHS National Cyber Security Division as part of the Software Assurance strategic initiative, and the
efforts are managed by MITRE. The CAPEC website provides a publicly available catalog of attack patterns along with
a comprehensive schema and classification taxonomy. CAPEC will continue to evolve with public participation and
contributions to form a standard mechanism for identifying, collecting, refining, and sharing attack patterns among the
software community.

Saftware Assurance Pock
Development, Vession 2.2, June 26, 2012

Development teams should use attack patterns to understand the resilience of their software relative to common attacks

and misuse. Table 2 lists the Mission/Business risks associated with each CWE, and it lists some of the possible attacks

and misuses associated with the relevant CWEs which enable exploitation of the software.

For a full listing and description of all the attacks related to a particular CWE visit the websites for CWE and CAPEC at
hitp://cwe mitre org and htlp://capec.mitre.org .

 Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks

CWE
CWE-22 ! Improper Limitation of a

Traversal)

Pathname to a Restricted Directoey ('Path

»

Related Attack Pattern
CAPEC-23: File System Function
Injection, Content Based
CAPEC-64: Using Slashes and
URL Encoding Combined to Bypass
Validation Logic
CAPEC-T6: Manipulating Input to
File System Calls
CAPEC-T8: Using Escaped Slashes
in Alternate Encoding
CAPEC-T9: Using Slashes in
Altemate Encoding
CAPEC-139: Relative Path
Traversal

Mission/Business Risks

DoS: crash / exit / restart
Execute unauthorized code or
commands

Madify files or dircctories
Read files or directories

CWE-T8 ! Improper Neutralization of

CAPEC-6: TCP Header

DoS: crash / exit / restart

CAPEC-12: Embedding Seripts in
HTTP Query Strings

CAPEC-63. Simple Script Injection
CAPEC-85: Client Network
Footprinting (using AJAX/XSS)
CAPEC-86: Embedding Script
(XSS) in HTTP Headers
CAPEC-91: XSS in IMG Tags
CAPEC-106: Cross Site Scripting
through Log Files

CAPEC-198: Cross-Site Scripting in
Error Pages

CAPEC-199: Cross-Site Scripting
Using Alternate Syntax
CAPEC-209: Cross-Site Scripting
Using MIME Type Mismatch
CAPEC-232: Exploitation of
Privilege/Trust

CAPEC-243: Cross-Site Scripting in
Attributes

CAPEC-244: Cross-Site Scripting
via Encoded URI Schemes

Key Practices for Mingeting the Mas Egregious Exploushle Software Weaknesees

Special Elements used in an 08 C d| » CAPEC-15: C d Delimiters Execute unauthorized code of
('0S Command Injection’) » CAPEC43: Exploiting Multiple commands
Input Interpeetation Layers Hide activities
» CAPEC-88: OS Command Injection Madify application data
» CAPEC-108: Command Line Modify files or directories
Execution through SQL Injection Read application data
Read files or directories
CWE-T9 : Improper Neutralization of » CAPEC-18: Embedding Scripts in Bypass protection mechanism
Input During Web Page Generation Nonscript Elements Execute unauthorized code of
('Cross-site Scripting”) » CAPEC-19: Embedding Scripts commands
within Scripts Read application data

Related Attack Pattern

» CAPEC-184: Software [ntegrity
Attacks

» CAPEC-185: Malicious Software
Download

» CAPEC-193: PHP Remote File
Inclusion

» CAPEC-222: iFrame Overlay

» CAPEC-251: Local Code Inclusion

» CAPEC-252: PHP Local File
Inclusion

» CAPEC-253: Remote Code
Inclusion

CWE-862 : Missing Authorization » CAPEC-1: Accessing Functionality
Not Properly Constrained by ACLs

» CAPEC-17: Accessing, Modifying
or Executing Executable Files

» CAPEC-58: Restful Privilege
Elevation

» CAPEC-122: Exploitation of
Authorization

Bypass protection mechanism
Gain privileges / assume identity
Medify application data

Medify files or directories

Read application data

Read files or directories

¥ ¥ ¥ ¥ ¥ ¥

Configured Access Control Security
Levels

CWE-863 : Incorrect Authorization » CAPEC-1: A ing Functionality
Not Properly Coastrained by ACLs

» CAPEC-17: Accessing, Modifying
or Executing Exccutable Files

» CAPEC-58: Restful Privilege
Elevation

» CAPEC-122: Exploitation of
Autherization

» CAPEC-180: Exploiting Incorrectly
Configured Access Control Security
Levels

Bypass protection mechanism
Gain privileges / assume identity
Medify application data

Maodify files or directories

Read application data

Read files or directories

¥ ¥ ¥ ¥ ¥ ¥

Key Practices

The key practices documented in “2011 CWE/SANS Top 25 Most Dangerous Programming Errors” focus on preventing
and mitigating dangerous programming errors. Some of the Key Practices specified in the pocket guide are denved from
mitigation recommendations that were common across many of the CWEs in the CWE Top 25, and others came from
approaches described on the CERT Secure Coxding Wiki., Additional information on preventing the vanous weaknesses
15 available in the CERT Secure Coding Wiki at https://www securecoding cert.org/ and other websites listed under On-
Line Resources of this SwA Pocket Guide. Development teams are also encouraged to use the CAPEC attack patterns to
gain understanding of how their software can be attacked, as well as considering how they can engineer their software
to better handle such attacks. They are also encouraged to use the CAPEC attack patterns to develop tests that can
determine the resilience of their code relative to the common attacks used to exploit software weaknesses. In this SwA
Pocket Guide the key practices are grouped in tables according to Software Development Life Cycle (SDLC) phases:

1. Requirements, Architecture, and Design (Table 3) ;

2. Build, Compilation, Implementation, Testing, and Documentation (Table 4) ;
3. Installation, Operation and System Configuration (Teble 5) , and

12 Seftware Asswance Pocker Gulde Series
Developmenn, Vession 2.2, June 26, 2012 (Draf1)

4. Associated CERT Coding Rules (Table 6) .

|Table 3 - Requirements, Architecture, and Design |
Prevention and Mitigation Practices CWE

For any security checks that are performed on the client side, ensure that these checks ©WE-22 - Improper Limitation

are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass of a Pathname to 2 Restricted

the client-side checks by modifying values after the checks have been performed, or S Y)

by changing the client to remove the client-side checks entirely. Then, these modified

values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides

constructs that make this weakness easier to avod.

When the set of acceptable objects, such as filenames or URLs, 1s limited or known,

create a mapping from a set of fixed input values (such as numeric IDs) to the actual

filenames or URLs, and reject all other inputs.

For exumple, [D 1 could map to "inbox.txt" and ID 2 could map to “profile.txt". Features

such as the ESAPI AccessReferenceMap provide this capability [R.22.3)

1f at all possible, use library calls rather than external processes to recreale the desired ~ CWE-/8 * Impropes

functionality. Neutralization of Special
Elements wsed in an 08

For any data that will be used to generate 2 command to be executed, keep as much of W(‘OSGM

that data out of external control as possible. For example, in web applications, this may
require storing the data locally in the session’s state instead of sending 1t out to the chent
in a hidden form field.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool,
library, or framework. These will help the programmer encode outputs in a manner less
prone to error.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide
this capability at every point where output is generated.

Some languages offer multiple functions that can be used to invoke commands. Where
possible, identify any function that invokes a command shell using a single string, and
replace it with a function that reguires individual arguments. These functions typically
perform appropriate quoting and filtering of arguments. For example, in C, the system()
function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. [n
Windows, CreateProcess() only accepts one command at a time. In Perl, if system() is
provided with an array of arguments, then it will guote each of the arguments.

Key Prectices for Mingatieg the Mag Egregiods Exploitable Software Weakiesess

Injection’)

13

Tobe b= s CERY Collog taley
Prevention and Mitigation Practices

No associated CERT coding rules listed for this CWE entry.
Type

SEC06-J: Do not rely on the default automatic signature verification provided b CWE-4%4 : Download of Code

not rely on ault au signature verification pro ¥ :

No associated CERT coding rules listed for this CWE entry. CWE-601 : URL Redirection
o Untrusted Site ('Open

ERRO7-C; Prefer functions that support error checking over equivalent functions that CWE-676: Use "M
Dangerous Function

FI001-C: Be careful using functions that use file names for identification

INT06-C: Use striol() or a related function to convert a string token to an integer

INTU6-CPP: Use striol() or a related function to convert a stnng loken 1o an inleger

F1001-CPP: Be carcful using functions that use file names for identification

FIO03-J: Create files with . ; permissi CWE-732 : Incorrect

reate files with appropriate access permission =S o

SEC01-J: Do not allow tainted variables in privileged blocks Critical Resource

ENV(3-J: Do not grant dangerous combinations of permissions

F1006-CPP: Create files with appropriate access permissions

F1006-C: Create files with appropnate access permissions

No associated CERT coding rules listed for this CWE entry. CWE-759 : Use of 2 One-Way
Hash without a Salt

MSC03-): Never hard code sensitive information CWE-798 : Use of Hard-coded
Credentials

ENVO03-CPP: Sanitize the environment when invoking external programs CWE-S0T : Reliance on
Untrusted Inputs in a Security

SEC09-J: Do not base security checks on untrusted sources

No associated CERT coding rules listed for this CWE entry. CWE-629 : Inclusion of
Functionality from Untrusted
Control Sphere

No associated CERT coding rules listed for this CWE entry, CWE-862 : Missing
Authorization

No associated CERT coding rules listed for this CWE entry. CWES61 - Incorrect
Authorization

Table 7 - Shared Mitigations |
Mitigation CWE Entries

MIT-10

Run or compile your software using features or extensions that automatcally provide a protection
mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms
that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red
Hat FORTIFY _SOURCE GCC flag, StackGuard, and ProPolice.

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’)

2. CWE-131 : Incorrect Calculation of Buffer Size

MIT-IL | Use a feature like Address Space Layout Randomization (ASLR).[R XX A] [R XXB]

34 Seftware Assurance Pocker Guide Series
Developmens, Vession 2.2, lune 26, 2012 (D)

CWE Entries

1. CWE-131: Incorrect Calculation of Buffer Size
2. CWE-190 : Integer Overflow or Wraparound

MIT-9 Consider adhering to the following rules when allocating and managing an application’s memory:

1. CWE-120 : Buffer Copy without Checking Size of Input (Classic Buffer Overflow’)

Creating Custom Top-N Lists using CWSS and CWRAF

The CWE/SANS Top 25 is a great starting point, but each organization has its own set of business priorities, threat
environment, and risk tolerance and for those with the an understanding of those 1ssues, a more refined and custom Top
25 for their business and what software is doing for their business is possible through the Common Weakness Scoring
System (CWSS) (https://ewe.mitre.org/cwss/) and the Common Weakness Risk Analysis Framework (CWRAF) (https://
cwe.mitre.org/cwraf/). The mechanisms in CWSS and CWRAF minimize this difficulty by letting organizations model
their own business impact considerations into a risk-scoring mechanism.

CWSS provides the mechanism for scoring software's weaknesses in a consistent, flexible, open manner while
considering the context and reflecting the weaknesses' impacts against that context. It aims to provide a consistent
approach for tools and services prioritizing their static- and dynamic-analysis findings while addressing government,
acadermia, and industry stakeholder needs.

CWRAF uses the core scoring mechanisms from CWSS to let software developers and consumers prioritize their

own target list of software weaknesses across their unique portfolio of software applications and projects, focusing on
those with the greatest potential to harm their business. To reduce risk, organizations can select appropriate tools and
technigues, focus staff training, and define contracting details to ensure outsourced efforts also address the prioritized
155UES.

CWRAF and CWSS let users create top-n lists for their particular software and business domains, missions, and
technology groups. In conjunction with other activities, CWSS and CWRAF help developers and consumers introduce
more robust and resilient software into their operational environments.

Key Discussion Points Between Developers and Consumers, Acquirers, and
Project Management

Improving software assurance requires an honest dialog between consumers, acquirers, project managers, and developers
on an ongoing basis. Here are some discussion points you can bring up to spark a discussion that will hopefully provide
you and them a better understanding of what you and they are doing and need to do to help improve the assurance
around your software.
1. Design/Development Practices
a. Which BSIMM or OpenSAMM sctivities/practices are followed?

b. Which SDLC activities are used to directly prevent or mitigate vulnerabilities in the application
software? (e.g. threat modeling, automated code analysis (static or dynamic), etc).

¢. Which security controls have been utilized to mitigate specific problems (e.g. authentication,
authorization, cryptography)
d. Which security-related framewaorks are used, such as ESAPI or built-in frameworks?

Key Practices for Mitgetieg the Most Egregious Exploiable Softwace Weaknesses 41

Which secure coding rules/practices are followed? (¢.g. CERT, MISRA, ISO 5C-22, custom). How is
conformance enforced (e.g. automated tools during checkin)?

What differences, if any, exist between the secure development practices for legacy code, versus newly-
developed code?

For cach implemented IETF RFC, how are the concerns in the RFC's "Security” section mitigated?

Which "Top N" vulnerability/attack lists do your development practices actively attempt to address
(CWE Top 25, OWASP Top Ten, custom Top-N [ist)?

2. Third-Party Software Management

Which third-party libraries are used by the software?

How does the development team keep current with third- party libraries so that it does not use code
with known vulnerabilities?

How are third-party code changes and vulnerabilities tracked/monitored?
Which third-party libraries were independently examined for vulnerabilities before being included in
the software?

3. Detection and Analysis

Which standardized analysis/testing methodologies are used to evaluate the software? (e.g. OWASP
ASVS, OSSTMM)

Has an independent 3rd-party review been performed against the software? Did the review cover code
implementation, design, architecture, or installation settings?

What tools are used for automated code analysis? Static or dynamic”? White box or black box?
Which manual analysis technigues were used?

What specifications, data formats, and protocols are used? Were any test case suites or fuzzing tools
used to evaluate the implementation (e.g. PROTOS)?

What is the attack surface of the software (in privileged code and overall)?. What metrics are used? Can
the attack surface be described in terms of CAPEC?

Which parts of the code have been most recently reviewed?
Which parts of the software conzain legacy code whose analysis has been skipped?

4. CompilerEnvironment

Which compiler settings are used to reduce or eliminate risk for key weaknesses (e.g. /GS switch)?
Were any compiler warnings ignored when compiling the code? If so, which ones and why?

Was the code compiled using safe libraries?

Which OS features are used to reduce or eliminate the risk of important weaknesses (e.g. DEP, ASLR)?

5. Configuration/Installation

Is the product installed "secure by default”™?

Is the product installed so that critical executables, libraries, configuration files, registry keys, ctc.
cannot be modified by untrusted parties?

Does the sofiware run with limited privileges? If not, how is privilege separation performed?

How docs the documentation cover security-relevant settings for administrators to use to lock down the
software?

Does the software work under FDCC/USGCB configurations, and/or other secure configurations?
How does the software restrict access to network ports?

6. Vulnerability Response

42

Seftwcr P fe Sesiea

Developmen, Vession

a. Isasecurity response center st up to handle incoming vulnerability reports from external parties?
b. How casy is it for independent researchers and non-customers to report vulnerabilities?

€. Are emergency procedures in place to quickly fix issues that are first discovered being exploited in the
wild?

d. Are procedures in place to handle when vulnerabilities are publicly disclosed without notifying the
developer or giving sufficient time to produce a patch)?

¢. Isthere a sufficiently comprehensive set of information sources that are monitored for reported
vulnerabilitics in your own software, in third-party products, and competitor/analogous products”?

f. When a new weakness is found by an outside party, how are the software and associated development
practices reviewed and modified to ensure that similar weaknesses are also detected and removed?

7. Vulnerability Disclosure
a. How are consumers of the software notified about new vulnerabilities found in the code?

b. For vulnerabilitics that are publicly disclosed by other parties without a patch, is there a policy to
provide public commentary before a patch is available?

¢. Which details are disclosed to customers? What is disclosed to the general public?
d. Are any credits or compensation provided to independent vulnerability rescarchers?

8. What kind of evidence or proof can be offered regarding these claims?

Using Tools and Other Capabilities to Identify the Top 25

Developers and third-party analysts can use CWE-compatible tools that can map to CWE items in the CWE Top 25.
With the advancing maturity and increasing adoption of CWE, most vendors of software analysis tools and services
express their findings of weaknesses in code, design, and architecture using CWE identifiers. This common language for
expressing weaknesses has eliminated much of the ambiguity and confusion surrounding exactly what the tool or service
has found. At the same time, different vendors take different approaches as to how they look for weaknesses and what
weaknesses they look for. The CWE Coverage Claims Representation (CCR) is a means for software analysis vendors
to convey to their customers exactly which CWE-identified weaknesses they claim to be able to locate in software. The
word claim is emphasized since neither the CCR itself nor the CWE Compatibility Program venfy or otherwise vet these
statements of coverage. The CWE Effectiveness Program will eventually fulfill this role of venfication.

The main goal of the CCR 15 to facilitate the communication of unambiguous statements of the intention of a tool or
service to discover specific, CWE-identified weaknesses in software. These statements of claim are intended to allow

the providers of software analysis tools and services and the consumers of those tools and services to share a single,
unambiguous understanding of the scope of software weakness analysis. CCR wants users of tools and services to be
aware and informed of the coverage of the tools and services they make use of in analyzing their software, and when
specific classes of weaknesses or individual weaknesses are of specific concern, they can make sure their tools and
services are at least trying to find them. Having a mis-match between an organization’s focus and the capabilities of
their tools and services is not something to be discovered after using and depending on them, but rather is something that
should be addressed in the initial discussions and exploration of bringing those capabilities to bear for the organization.

It 1s anticipated that the CCR will also foster innovation in the technology of software analysis tools and services by
allowing vendors to clearly state their intentions with respect to weakness discovery and understand more clearly when
there 1s a need for targeting additional weaknesses to address their customer's concerns. Currently, a tool that does a very
deep analysts on a small subset of the entire set of CWE-defined weaknesses may be judged as inadeguate by potential
customers since, by definition, it fails to discover a broad set of weaknesses. However, with the CCR, the tool provider
could supply a CCR document for that tool, clearly setting expectations as to the set of weaknesses that the tool attempts
to discover. Tool consumers could then evaluate tools based on what specific CWE-identified weaknesses those tools
claim to discover and how that coverage fits within their needs, rather than comparing it to the entire set of CWE-defined
weaknesses.

Key Practices for Mingetieg the Most Egregious Expéoiable Software Weakeesses 43

s BUILDING SECURITY IN

Making
Security
Measurable*

Measuring Software Security

Moving Towards Software Assurance Automation

Part 2

Joe Jarzombek, DHS Director of SwWA
Robert Martin, MITRE CWE Project Lead

August 21, 2012
MITRE

But you also needed to deal with the people that are
out there trying to take advantage of vulnerabilities
and weaknesses in your technologies, processes, or

practices...

Cross-site Scripting
(XSS) Attack (CAPEC-86)

Improper Neutralization
of Input During Web Page
Generation (CWE-79)

1 an SQL Command

2| Improper Neutralization of
;| Special Elements used in

(CWE

What are the Attacks that would be Effective Against Your Weaknesses?

1 CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Summary

|Weakness Prevalence ‘ High |Cun5equence5 |Data loss, Security bypass http://cwe.mitre.org
|Remediation Cost ‘ Low |Ease of Detection |Ea5y

|Attack Frequency [Often |Attacker Awareness |High

Discussion

These days, it seems as if software is all about the data: getting it into the database, pulling it from the database, massaging it into information, and sending it elsewhere for
fun and profit. If attackers can influence the SQL that you use to communicate with your database, then suddenly all your fun and profit belongs to them. If you use SQL
queries in security controls such as authentication, attackers could alter the logic of those queries to bypass security. They could modify the queries to steal, corrupt, or
otherwise change your underlying data. They'll even steal data one byte at a time if they have to, and they have the patience and know-how to do so. In 2011, SQL injection
was responsible for the compromises of many high-profile organizations, including Sony Pictures, PBS, MySQL.com, security company HBGary Federal, and many others.

Technical Details | Code Examples | Detection Methods | References

Prevention and Mitigations

http:/icapec.mitre.org

Architecture and Design

For example, consider using persistence layers suc]

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Architecture and Design
If available, use structured mechanisms that auton|
validation automatically, instead of relying on the (
Process SQL queries using prepared statements, p
dynamically construct and execute query strings wj

Architecture and Design, Operation

Run your code using the lowest privileges that are
That way, a successful attack will not immediately
administrator, especially in day-to-day operations.
Specifically, follow the principle of least privilege w|
the requirements of the system indicate that a use|
on all database objects, such as execute-only for s

Architecture and Design
For any security checks that are performed on the
by modifying values after the checks have been pe

Implementation

If you need to use dynamically-generated query st
conservative approach is to escape or filter all char|
are still needed, such as white space, wrap each a
Instead of building your own implementation, such|
that parameters have certain properties that make

Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not
being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the
chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.

In the context of SQL Injection, error messages revealing the structure of a SQL query can help attackers tailor successful attack strings.

Operation

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth.

Effectiveness: Moderate

Notes: An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs
that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some
manual effort may be required for customization.

Operation, Implementation
If you are using PHP, configure your application so that it does not use register_globals. During implementation, develop your application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

Related CWEs
[CWE-90 [Improper Neutralization of Special Elements used in an LDAP Query ("LDAP Injection')
[CWE-564 [SQL Injection: Hibernate

Implementation
Assume all input is malicious. Use an "accept know

[CWE-566 | Authorization Bypass Through User-Controlled SQL Primary Key
|CWE—619 |Dangling Database Cursor ('Cursor Injection')

MITRE

Related Attack Patterns

CAPEC-IDs: [view all

65

©2012 MITRE

Software, Network Traffic, Physical, Social
Engineering, and Supply Chain Attack Patterns

m Common Attack Pattern Enumeration and Classification

« A Community Knowledge Resource for Building Secure Software

Home > CAPEC List > CAPEC-1000: Mechanism of Attack (Release 1.7.1)

TN CAPEC-1000: Mechanism of Attack Definition Graph List Slice XMLzip

Full CAPEC Dictionary

Methods of Attack View Mechanism of Attack

e View ID: 1000 (View: Graph) Stntam: Draft
:

S — ¥ View Data

ocuments

Resources View Structure: Graph
CIITTEEEN view Objective

Related Activities

Collaboration List

¥ Relationships

T-Shirt Nature Type ID
| News & Events | HasMember ® 118
Calendar HasMember @& 119

Free Newsletter

HasMember @& 152
HasMember @ 156
:r;guri::mwts HasMember (" 172

HasMember & 210
HasMember & 223
Search the Site HasMember IC 225
HasMember @& 232
HasMember @& 255

Make a Declaration

Name

Data Leakage Attacks
Resource Depletion

Injection (Injecting Control Plane content through the Data Plane)
Spoofing

Time and State Attacks
Abuse of Functionality
Probabilistic Techniques
Exploitation of Authentication
Exploitation of Privilege/Trust
Data Structure Attacks

HasMember ® 262 Resource Manipulation
HasMember [286 Network Reconnaissance
HasMember [403 Social Engineering Attacks
HasMember @ 436 Physical Security Attacks
HasMember [437 Supply Chain Attacks
CAPECs in this view Total CAPECs
Total 412 out of 474
Views 0 out of 6
Categories 19 out of 68
Attack Patterns 400 out of 400

Page Last Updated: May 04, 2012

MITRE

Description

v
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

©2012 MITRE

SQL Injection Attack Execution Flow

User

(MssQL)
=3 1. Web Form with ‘ in all fields Database
‘ 2I.I IOI ;‘I9I éldl:lel;rlolrlrlrllelslslélgle IIIIIIIIIIIIIIIIIIIIIII ’
III 1

X
SELECT ITEM,PRICE FROM
PRODUCT WHERE

ITEM CATEGORY='$user input" j
ORDER BY PRICE

5. Web Form with: ' exec master..xp_cmdshell ‘dir’ --

Simple test case for SQL Injection

Test Case 1: Single quote SQL injection of registration page web form fields

Test Case Goal: Ensure SQL syntax single quote character entered in registration
page web form fields does not cause abnormal SQL behavior
Context:

» This test case is part of a broader SQL injection syntax exploration suite of tests
to probe various potential injection points for susceptibility to SQL injection. If
this test case fails, it should be followed-up with test cases from the SQL
injection experimentation test suite.

Preconditions:

« Access to system registration page exists

» Registration page web form field content are used by system in SQL queries of
the system database upon page submission

» User has the ability to enter free-form text into
registration page web form fields http://cwe.mitre.org

Test Data:
« ASCII single quote character
Action Steps:
« Enter single quote character into each web form

field on the registration page
« Submit the contents of the registration page c
Postconditions: |

» Test case fails if SQL error is thrown http://capec.mitre.org

» Test case passes if page submission succeeds without
any SQL errors

©2012 MITRE

CW~

Common Weakness Enumeration
A Community-Developed Dictionary of Software Weakness Types

Home > CWE List > CWE- Individual Dictionary Definition (1.10)

COTEE CWE-89: Improper Neutralization of Special Elements used in an SQL

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
Cwss

Calendar
Free Newsletter

Compatibility

Program
Requirements
Declarations

Make a Declaration

Contact Us

Search the Site

MITRE

Command ('SQL Injection')

MOST DANGEROUS

SOFTWARE
ERRORS

Search by ID:] ©

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Weakness ID: 89 (Weakness Base)
¥ Description

Description Summary

Status: Draft

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it
does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a

downstream component.
Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs
to be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily detected, and easily exploited, and
as such, any site or software package with even a minimal user base is likely to be subject to an attempted attack of this kind.

This flaw depends on the fact that SQL makes no real distinction between the control and data planes.

¥ Time of Introduction

¢ Architecture and Design
¢ Implementation
¢ Operation

v Applicable Platforms

Languages
All

Technology Classes
Database-Server

® Gooele Earth
JrAF) GREE) FoRlv) U-)UT) EA0A) A 'H'H'

Severity
\' Emergency A critical

Rk
»”

= Xy
Ao X
“'1 ?-“&'\ "

SQLInjec ion Pr_

.. ,, ;

D‘i‘Eiﬁ th o lP robe

r 4 - P e SGL njectl’&ﬁ’rob:el!ﬁctcalﬁd
el - N T L T T T e

S Q1 Injeotion ProbefP stedte .. gbe Detected & Winjectionte ol e U CoTeDe Re LI
'&i f B ed Zany ?ﬁ" K l‘ei:.‘] ’ b SDLﬁIn eohmq)fro e Dateut d

AY E'lniection Probe Detected.
’ SQL]n;octaon%rol;éb%cta

fj' 4:izke-{311"8"1?*:‘.1:9ld
'\

ol
““Sﬁ'leac i0 F'rl:;ftg ‘Deta it

hGL Injaction F'roh : e
he Detacted. sm_
ohe Detects)

ion Probe Det:
- - .q 9
ioniRrob

55
A

njection Brob
on Datected 2

A . i i el
leachon robe D tec Eed
5:@& :,} sm r%e y i

SQL Injection Prob_ e
SQL Injaction Probe Betect

7,

SQL Injection:Probe Detacted 3 L{njentlnn Proba Detected. LZA%n)
(2 l!ﬁ.:"".‘w'lilIJT‘I":I'ra!:fh:ntru:.s

BQL Inj ectmn Probe Dotect S 2, Lmagel %
| ¥ Spl__ InjﬂGtIOl‘l%DBtﬁGtﬁd ‘ SDA Farm Service Agency
A1 i sio p e SR YNCD | Thia ot 2. SIOSNOAA. U.S. Navy, NGA. GEBCO

5606

Massive SQL injection attack has compromised nearly 200,000 ASP.Net

2 www.networkworld.com/news/2011/101911-sqgl-injection-attack-252188.htmi?source=NWWNL

,‘,_v c

Massive SQL injection attack has compromised nearly

nnn nnn AQD Nat citnn

SQL Injection Attacks - Are You Safe?
By Mitchell Harper | June 17, 2002 | .NET

Buke ‘4| [+7 | 1 0 | Digg 3 Tweet /0) reddit
Email (&2 Print

The database is the heart of most Web applications: it stores the data needed for the Websites and
applications to "survive". It stores user credentials and sensitive financial information. It stores

The attack is targeting users whose de
Italian, Polish or Breton. One of the sitq
the United States and is hosted by Hos
malware accesses a site hosted in the

Microsoft has been offering ASP.Net pr
injection attacks since at least 2005. In
injection attacks with SQL Server 2008
statements should be reviewed for inje
syntactically valid queries that it receivy
skilled and determined attacker."

Companies running ASP.Net websites

IT Security & Network Security News

Mass SQL Injection Attacks Uses Automated Tools,
Search to Infect New Sites

By: Fahmida Y. Rashid
2012-01-10
Article Rating:¥svsvsvsys / 0

There are user comments on this IT Security & Network Security News & Reviews story.

Attackers are using search results as a reconnaissance tool to identify sites to hit in the latest mass injection
attack directing users to Lilupophilupop.com.

Security researchers monitoring mass SQL injection attacks warned the latest one Rate This Article:

may be nearing a million infected pages using a combination of automated tools and

N NN O
reconnaissance using search engines. PoorO O O O @/Es\t
Rate

The "Lilupophilupop" SQL injection campaign has infected a little over a million
URLSs since it was first detected in early December, according to a post on the SANS
Institute's Internet Storm Center. The security firm detected only 80 corrupted URLs
when it first noticed the campaign. Mark Hofman, a handler at the SANS Institute's
Internet Storm, acknowledged the list contained duplicate URLs but regardless of
the actual number of infected sites, the campaign was definitely growing.

E-mail @] PDF Version

uEi] Print

Victims who land on the infected URLs are redirected to other sites and wind up on Lilupophilupop.com, which can display
an "adobeflash page" where they are encouraged to download what they think is an update to Adobe Flash, or to a fake
antivirus site. The scam's ultimate goal is to trick victims into paying for software or antivirus protection they don't need,
and will likely cause more problems once installed.

"Sources of the attack vary, it is automated and spreading fairly rapidly," Hofman wrote in an initial analysis of the attack.
This newest mass injection is similar to the LizaMoon attack, which was responsible for redirecting 1.5 million URLs to

fake antivirus pages. Websites based in the Netherlands are the biggest victims of Lilupophilupop, followed by French
sites, according to the SANS Institute. Sites with backends running on IS, ASP or Microsoft SQL Server seem to be the

L

3
)ase built
, pay
DU pad
th he
tion
bf
paL
this
irsons
hck.
re
most fle or
mands,
t
e
i
) of
[FTash or Java.

hosts of this latest attack.

primary target.

Scoring Weaknesses Based on Context

Archetypes:
« Web Browser User Interface

Vianettes:

1. Web-based Retail Provider

2. Intranet resident health
records management
system of hospital

Database
Systems

J

INTRANET

« Web Servers
« Application Servers
- Database Systems
* Desktop Systems
« SSL
{—(\/ Byg\?vger .
Web
Browser
Web
1 Router Web Application
| Servers Servers
DMZ
- 1111 L
I I Firewall I I
Web LDesktopJ LDesktopJ
Application Servers Systems Systems
Servers HJ BWeb BWeb

Desktop
Systems

Web

Browser

Desktop
Systems

Web
Browser

©2012 MITRE

The Software Supply Chain

Legacy @ ?
Rouse I/\’ Software
\/\ Other
?
Programs @ ”)

?

Program
Office

Outsource
Prime
Contractor

Foreign

l’\/ Foreign
Location

Develop

Acquire In-house

Off-shore

Software

us Foreign
Developers
Acquire
Develop Outsource l ” ‘ e ™ NI
In-house) A i § ‘ \
/ -
’ L ’ . l : '
? / "y A‘v‘ (2 1 we e R L \ .‘“‘

“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure Software
Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis of May 2004
GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks” ©2012 MITRE

> 4o o 4 Q\/ ~ETem

"'—:\ SNow pACk A N
\ ; .
/’ \\ Y -/_ wiicrl"‘,‘/

z '

B\

.3 < Power Use 5

-
-

Agrlcultural Use o

r. . _i"“_f-
. - - 1
2 -

'\ Recreation Use

ot v

. sl

. L
-
e —

Agricultural Use

STATIC ANALYSIS

)
5 -

g M e

1114

SECURITYC PRIVA

bty ety P 0y mad Sy

The Software Indusfry’s
“Clean Water Act” Alternative

Robert A. Martin and Steven M. Christey | MITRE

Following the water industry’s example, the authors advocate for implementing processes that can
examine software and remove the most dangerous contaminants, given its intended use.

M uch like the water we use in diverse daily activi-

ties across all aspects of our world's ecosystem,
the actual sources of, and manner in which we receive,
the software in our cyberecosystem are often unknown
and possibly unknowable. Over time, the water industry
has developed water-quality measurements and meth-
ods that give users trust in the fact that harmful water
qualities aren't present. This is due to the industry's
technical ability to specify and measure water qualities,
such as d 1§ , and pollutants,
as well as the regulatory framework that mandates that
those who offer water check these characteristics for
dangerous levels according to the water’s intended use.
When harmful levels are detected, mitigations and con-
trols can be applied and verified, including water soften-
ers, Gltration, settling ponds, and cooling towers.

The software industry must implement similar pro-
cesses and technical methods to examine software for
dangerous contaminants, given its intended use, and
ensure that appropriate mitigations and controls are in
place to remove the harmful characteristics. Several soft-
ware assurance strategic initiatives, cosponsored by the
US Department of Homeland Security National Cyber
Security Division, attempt to make this process easier.
The C Weakness E tion (CWE; hnttps://
cwemitre.org) offers the industry a list of potentially

ure, h

May!June 2012

Copublshed by the ILLL Compuer and Selabilcy Societes

dangy software ¢ inants, and the C

Weakness Scoring System (CWSS; https://cwe.mitre.
org/cwss) and the Common Weakness Risk Analysis
Framework (CWRAF; https://cwe.mitre.org/cwraf)
provide a standard method to identify which of these
contaminants are most harmful to a particular organiza-
tion, given the software’s intended use.

In this article, we define an approach for organiza-
tions to document software’s security-relevant capa-
bilities and rank the various potential technical impacts
from CWEs so those CWEs with the most impact to
an organization can be prioritized for mitigation. By
addressing vulnerable software and finding systematic
and verifiable ways to remove these weaknesses, soft-
ware providers can improve customers' trust in their
systems and possibly avoid a regulatory solution, which
might have unintended consequences.

Background

In the late 1990s, the sharing, discussing, measuring,
and reporting of activities surrounding software prod-
uets’ vulnerabilities was ¥ d and cumber-
some to manage. With the help of industry, academia,
and government, MITRE attempted to change this by
introducing the Common Vulnerabilities and Expo-
sures (CVE) effort (https://cvemitre.org). CVE lets

1540-755312/531.00 £ 2012 ILL

Technical Impacts — Common Consequences

CWE - CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) (2.1)

A

Vi

{_ f cwe.mitre.org/data/definitions/89.htmi

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tyvpes

| Home > CWE Li

t > CWI

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
CWSS

CWRAF

T-Shirt

News

Calendar

Free Newsletter

Compatibility

Program
Regquirements

Coverage Claims
Representation

Compatible Products
Make a Declaration
Contact Us

Search the Site

Weakness ID: 89 (weakness Base)
¥ Description

Description Summary

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary
user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that modify the back-end database, possibly including execution of

system commands.

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection")

c M- Googe ______________aJ

Status: Draft

SQL injection has become a com!
even a minimal user base is likel
data planes.

+ Time of Introduction
* Architecture and Design
* Implementation
* Operation
¥ Applicable Platforms
Languages
All
Technology Classes
Database-Server

¥ Modes of Introduction
This weakness typically appears if

¥ Common Consequences

Scope Effect

Confidentiality Technical Impact: Res
Since SQL databasq

Access Technical Impact: By
Control If poor SQL comma)
the password.
Access Technical Impact: By
Control If authorization infg
vulnerability.
Integrity Technical Impact: Moq

Just as it may be p

MITRE

¥ Common Consequences

Scope
Confidentiality

Access
Control

Access
Control

Integrity

Effect
Technical Impact: Read application data

Since SQL databases generally hold sensitive data, loss
Technical Impact: Bypass protection mechanism

If poor SQL commands are used to check user names ai
the password.

Technical Impact: Bypass protection mechanism
If authorization information is held in a SQL database, if
vulnerability.

Technical Impact: Modify application data

Just as it may be possible to read sensitive information,

©2012 MITRE

Technical Impacts —
Common Weakness Risk Analysis Framework (CWRAF)

Modify data

Read data

DoS: unreliable execution

DoS: resource consumption

Execute unauthorized code or commands
Gain privileges / assume identity

Bypass protection mechanism

Hide activities

MITRE ©2012 MITRE

Technical Impacts for CWE Entries

Note that this list is likely to change in future CWE versions.

CWE-89 (SQL Injection) has three technical impacts as listed in the
Common_Consequences element of the CWE entry:

e Read application data

e Modify application data
e Bypass protection mechanism

For CWE-120 (Cla5fic Buffer Overflow), the listed technical impacts are:

e Execute unauthorized code or commands
e DOS: crash / exit / restart

ID

Name

Subscore

Max

Technical Impacts and
Importance Subscores

CWE-89

SQL Injection

* Read data (8)
* Modify data (8)

* Bypass protection mechanism

(7)

CWE-120

Classic Buffer
Overflow

10

* Execute unauthorized code or
commands (10)

* DoS: unreliable execution (4)

Scoring Weaknesses Discovered in Code using CWSS

Analysis

Vignette
Technical Impact
Scorecard

Line
Line
Line
Line 212:
Line

Scoring
Engine

MITRE

Steps:

1. Establish weightings for the
vignette

2. Run code through analysis tool(s)

3. Tools produce report of CWE’s
found in code

4. CWSS scoring engine
automatically scores each CWE
based on vignette definition

5. Go to step 2 for each piece of

code applicable to this vignette

Line 212: CWE-9: 9.9
Line 72: CWE-84: 7.9
° Line 23: CWE-109: = ©
Line 104: CWE-482: 3.1
Line 213: CWE-754: 0.0

Step 1 is only done once — the rest is automatic

CWRAF/CWSS in a Nutshell

CWSS CWE

Score
97 CWE-79
95 CWE-78
94 CWE-22
94 CWE-434
94 CWE-798
93 CWE-120
93 CWE-250
92 CWE-770
91 CWE-829
91 CWE-190
91 CWE-494
90 CWE-134
90 CWE-772
90 CWE-476
90 CWE-131

CWSS

Scoring
Engine

User-defined
cutoff

W is all possible weaknesses; Wd is all known weakness$éx (CWE)

“Vignette”

Most
Important
Weaknesses

CWE Coverage Claims

Set of CWE’s a capability claims to
cover

Tool A

Most
Important

Weaknesses
(CWE'’s)

Tool B
Pen

Testing

Service Which static analysis tools and Pen Testing
services find the CWE’s | care about?

MITRE ©2012 MITRE

CWSS for a Technology Group

Web Application Technology Group Top 10 List

CWE Top 10 List for Web Applications can be used to:
* Identify skill and training needs for your web team
* Include in T's & C’s for contracting for web development
* Identify tool capability needs to support web assessment

MITRE ©2012 MITRE

ClE

CWE List

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs

SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

CWSS
CWRAF
CWE/SANS Top 25

Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Free Newsletter
Contact Us
Search the Site

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tyvpes

Common Weakness Risk Analysis Framework (CWRAF™)

CWRAF provides a framework for scoring software weaknesses in a consistent, flexible, open manner, while
accommodating context for the various business domains. It is a collaborative, community-based effort that is
addressing the needs of its stakeholders across government, academia, and industry. CWRAF is a part of the
Common Weakness Enumeration (CWE™) project, co-sponsored by the Software Assurance program in the
National Cyber Security Division (NCSD) of the US Department of Homeland Security (DHS).

CWRAF benefits:

¢ Includes a mechanism for measuring risk of security errors ("weaknesses") in a way that is closely
linked with the risk to an organization's business or mission.

o Supports the automatic selection and prioritization of relevant weaknesses, customized to the specific
needs of the organization's business or mission.

¢ Can be used by organizations in conjunction with the Common Weakness Scoring System (CWSS™) to
identify the most important weaknesses for their business domains, in order to inform their acquisition
and protection activities as one part of the larger process of achieving software assurance.

CWRAF and CWSS allow users to rank classes of weaknesses independent of any particular software package,
in order to prioritize them relative to each other (e.g., "buffer overflows are higher priority than memory
leaks"). This approach, sometimes referred to as a "Top-N list," is used by the CWE/SANS Top 25, OWASP
Top Ten, and similar efforts. CWRAF and CWSS allow users to create their own custom Top-N lists.

CWRAF Version 0.8.1

¢ Introduction

o How to Use CWRAF

o Relationships between CWRAF, CWSS, and CWE
o CWSS Scoring in CWRAF

o Scoring Weakness Findings Using Vignettes

- -

T0P 25 OWER

MOST DANGEROUS an
e | CV/RAF
Search by 1o: B ©

CWRAF
Introduction
CWSS Scoring in CWRAF
Creating Your Own Vignettes
Future Versions and Activities
Change Log
Vignettes
Tech Groups and Domains
Archetypes
CWRAF FAQs
Other Items of Interest
CWSS
Terms of Use

Vignettes — Technology Groups & Business/Mission Domains

Business/Mission
Domains

Technology

Web
Applications

Real-Time
Embedded

Systems Domain/

Tech Gp
N1

/—\

Control
Systems

End-Point
Computing
Devices

QOmmon Vignette for Technology Group

I

Database &
Storage Sys

Operating

Systems

Identity Mngt
Systems

Common Vignette for Domain

/

Enterprise
Sys Apps

il
\
e~

-1 O

® o

538

&S
—_———

Cloud
Computing

Common Weakness Risk Assessment Framework uses Vignettes with Archetypes to identify top CWEs in respective Domain/Technglggy (reups

)y

Common Weakness Enumeration
A Commaunity -Developed Dictionary of Software Weakses Thpes

Home > CWRAF > CWE List > CWRAF - Vignette Overview Matrix

Pl Detionary View
Develazmert View

CWRAF - Vignette Overview Matrix

Copyright © 2012

CWRAF
Introduction
The NITRE Corporaticn CWSS Scaring in CWRAF

Reearch View
Reperts http://owe mitre.org/cwrad/ Creating Your Own
Vigneties
Future Versions and
Saurom Activities
Process Change Log
Decarerts CWRAF Data
ThQn vignetzes
. Overvien Matrix
=B cwRAF version: 0.5.2 Date: July 3, 2012 S
= Domaing
Dacasuion Lat Archetyses
Dacimen Acchves CWRAF FAQ‘
D" Project Coordinator: Document Editor: (Ottsw Thutwn
cwas Bod Martin (MITRE) Steve Cvistey (MITRE)
CWSS
CWsAr
Terms of Use
CWL/SANS Tap 35
e —— CWRAF - Vignette Overview Matrix
Coverage Cairn
Representation
:::’:_:::‘:' This matrix provides an overview of the vignettes that are being actively defined within CWRAF, as summarized based on thelr domains and technology groups.
= Toch G';::"a{nzu""m banking- finance | chemical | ecomm | 7o energy evoting human- res|[natl- defense | pub- heaith soc-media || telecom
Free Newalotte:
n-trade, smart-meter, smart-grig-RUS, smart-grid-qw, elec-abs-int, evoting- med-billing, soc-net, tel-ras,
P—— Web Applications Ie-banklng retall-wie reg-elec, scada-hist, web-scada-hmi Interet, corp-vote e f0Y med-device lec-date [[web-mall
|-Time Em!
:;.:mm se s Isman-meter, smart-grig-RUS, smart-grid-qw evoting-DRE weap-sensormed-device
smart-meter, smart-qrid-RUS, smart-qrid-qw,
A ——— chem-flow, |re§-eiec; scada-hist, web-scada-hmi
End-Point Computing
Devices first-resp med-device
g:::;sse & Somge ‘ le-bankin retall-www ‘ scada-hist, web-scada-hmi ’ evoting-DRE ‘ lemp-com meg-billing
|E'L'3L"‘I. evoting- med-billing,
Operating Systems retail-www ‘ web-scada-hmi ’ Intemet. corn-vote med-device
Identity Management
Systems
Enterprise Systems & elec-abs-int, evoting- meg-billing,
Appiications ‘ le-bankin retall-www ‘ scada-hist, web-scada-hmi ’ Bt canaxts lemp-com, mod-devics
Cloud Computing | | |] | [
Enterprise Security
Products
evoting-DRE, evoting-
Network Communications ‘ web-scada-hmi ’# el

Domain Summary

This is an up-to-date list of domains as used by CWRAF. For each domain, a list of associated vignettes is provided.

Domain

Description

e-Commerce

The use of the Internet or other computer networks for the sale of products and services, typically using the WWW.

Vignettes: Web-Based Retail Provider

Banking & Finance

Financial industry, including depository financial institutions (banks, thrifts, and credit unions), insurers, securities brokers/dealers, investment
companies, some financial utilities, and their associated regulatory systems and agencies.

Vignettes: Financial Trading, Online Banking

Smart Grid (electrical network through a large region, using digital technology for monitoring or control), nuclear power stations, oil and gas
transmission, etc.

Energy Vignettes: Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow Control,
SCADA Historian, Distributed Production Facility Management using SCADA Web-based HMI
Chemical processing and distribution, etc.
hesnic Vignettes: Chemical Flow Control
Plants and distribution channels, supply chain, etc.
Manufacturing No vignettes defined.
Aerospace (such as safety-critical ground aviation systems, on-board avionics, etc.), highway, maritime transportation, mass transit, pipeline
Shipping & systems, and rail.
Transportation

No vignettes defined.

National Defense

Weapon systems, Intel networks, Defense Industrial Base, etc.

Vignettes: Weapon system sensor

Homeland Security

CBP, Coast Guard, Secret Service, TSA, etc.

No vignettes defined.

Government (Other)

Government (other than National Defense and Homeland Security)

No vignettes defined.

Emergency Services

Systems and services that support for First Responders, incident management and response, law enforcement, and emergency services for
citizens, etc. The organizations and processes for protecting and preserving critical assets before, during, and after a disaster or catastrophe.

Vignettes: First Responder

Public Health

Health care, medical encoding and billing, patient information/data, critical or emergency care, medical devices (implantable, partially
embedded, patient care), drug development and distribution, food processing, clean water treatment and distribution (including dams and
processing facilities), etc.

Vignettes: Medical Billing, Human Medical Devices

Food & Water

Food processing, clean water treatment and distribution (including dams and processing facilities), etc.

No vignettes defined.

Telecommunications

Cellular services, land lines, VOIP, cable & fiber networks, etc.

Vignettes: Teleworking - Remote Access Server, Teleworking - Web Mail

Support for employees to have remote access to internal business networks and capabilities, e.g. networking-capable PDAs and cell phones,
VPNs, Network Access Control (NAC), Web-based email services, etc.

Teleworking
No vignettes defined.
Electronic voting systems, whether for state-run elections, shareholder meetings, etc.
e-Voting Vignettes: State Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via Direct
Recording Election Machines., State or Local Elections using eVoting via an Internet web application, Corporate Shareholder Internet voting
(Example Domain) The use of the Internet or other computer networks for communication, collaboration, or entertainment in which a large
group of users can interact with each other. This includes social networking, wikis, blogs, music and photograph sharing, product/service
Social Media reviews, bookmarking, etc.

Vignettes: Social Networking, Electronic Dating

Human Resources

(Example Domain) Human resources - management of personnel within an organization, including recruitment, compensation (salary and
benefits), performance assessment, training, etc.

Vignettes: Employee Compensation

Vignette Summary

|banking-finance

Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and

Financial Trading ;
inventory.

The web-based interaction between a bank, credit union, or other financial institution and its consumers for managing accounts, paying

Onling Bankdn bills, and conducting financial transactions.

|chemical

A SCADA-based flow control system for a chemical plant. Underlying technology - heavy C usage. Systems developed in pre-Internet era

Chemical Flow Control with management consoles interfacing to them.

|ecomm
Web-Based Retail Provider .Internet-facmg, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and
e s P inventory.
Iemerg-svc
lFirst Responder lFirst responder (such as fire, police, and emergency medical personnel) for a disaster or catastrophe.
[energy
|Household Smart Meter |Meter within the Smart Grid that records electrical consumption and communicates this information to the supplier on a regular basis.
i ili . . 3 .
—Ysgnrs; Grid remote utit Obtains information from smart meters through neighborhood gateways.
smart Grid Nejghborhood Appliance between smart meter and remote utility server.
Gateway
Flow control for an electricity network throughout a relatively large region, to further connect suppliers and consumers. Power now
Regional Electricity Flow enters the grid from both sides (classic provider, but also home-to-provider e.g. home photo-voltaic and wind turbines in homes and
Control throughout the landscape). System needs to have "smarts" to the load leveling capabilities of the grid which is basically a large
distributed SCADA-type system.
SCADA Historian Historian server for archival and analysis of data for 2 SCADA system. Contains a database backend and is accessible via a web
e T interface. Access to the server is typically restricted to a DMZ or internal network.
A web-based Human Machine Interface (HMI) for SCADA systems. Users can visualize and control industrial automation processes in
Distributed Production Facility real-time from a control interface directly in communication with remote sensors and data collection points. All facets of production can
Management using SCADA |0 Monitored and managed from a web browser.
Web-tased HMI The HMI uses various frameworks (Java, .NET, etc.) with Restful Architecture (AJAX, XML, SOAP, XSL, and WML).

|
|evoting

State Election Administration

using remote Internet voting
via absentee ballot

Internet-facing polling system supporting high-volume transactions, high availability, Data-centric Database containing ballot
information, Audit log generation for each voter.

State or Local Elections using
eVoting via Direct Recording
Election Machines.

DRE systems are not directly connected with the Internet. Vote data is uploaded to a centralized server via modem. Election worker
retrieves hardcopies of the voting record from the machine and delivers the printouts to election officials. DRE machines are
programmed with firmware uploaded from a compact flash card. It is generally accepted that the computer used to upload the firmware
to the flash card should not be connected to the Internet.

State or Local Elections using
eVoting via an Internet web

application

Internet-facing polling systems are connected to the Internet and are designed to support high-volume transactions and high
availability. A Data-centric Database is used to collect ballot information, Audit logs are generated for each voter.

Corporate Shareholder
Internet voting

Corporate Shareholder voting using remote Internet voting

|human-res

Employee Compensation

Product for managing employee salary and bonuses. PII includes salary, financial transaction (e.g. for direct deposit), social security
number, home address, etc.

natl-defense A

Weapon system sensor Sensor for @ weapons system that is connected to the Global Information Grid (GIG).

|pub-health

Medical Billin Medical encoding and billing. Data used includes Electronic Health Records (EHR), financial management, interactions with insurance

companies.

Human Medical Devices

Medical devices - "implantable" or "partially embedded" in humans, as well as usage in clinic or hospital environments ("patient care”
devices.) Includes items such as pacemakers and automatic drug delivery. Control or monitoring of the device might be performed by
smartphones. The devices are not in a physically secured environment.

soc-media

Social Networking

Web site for enabling a large community of people to post comments, create profiles, exchange messages or pictures, and join affiliation
groups, e.g. Facebook, MySpace, Twitter, or LinkedIn. Free-form content, high connectivity between users, private messaging. Heavy
Web 2.0 usage.

Electronic Dating

Web site for electronic dating. Users can create profiles with pictures, exchange private email, participate in discussion forums, perform
searches. Heavy Web 2.0.

|‘telecom

Teleworking - Remote Access
Server

Remote Access Server used to support employees working outside the enterprise, including teleworking/telecommuting.

|Te|eworking - Web Mail

Use of web-based email for remote access.

CUE

Ql/SS
C)/RAF

TOP 25

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types —"

SOFTWARE
ERRORS

CWE List

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs

SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

CWSS
CWRAF
CWE/SANS Top 25

Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Free Newsletter
Contact Us
Search the Site

CWRAF
Introduction
CWSS Scoring in CWRAF
Creating Your Own Vignettes
Future Versions and Activities

Creating Your Own Vignettes

Currently, there are approximately 20 Vignettes and Technical Scorecards, but anyone can create their own
Vignette and its accompanying Technical Scorecard to identify which CWEs are most significant to their
business and applications. This section will help guide you through that process.

One of the items found in these sample Vignettes is the "Archetypes". A list of the currently defined Change Log
Archetypes that are available for use in describing Vignettes is here. If there are new Archetypes you need ¥;9c'|‘1°;: —
just identify them and send them to cwe@mitre.org and we can add them to the list. Archetype:

These Archetypes are used as the context for describing the technical elements utilized by the application
described in the Vignette.

Terms of Use

There are two tables for each Vignette, "Vignette Definition" and "Technical Impact Scorecard".

Vignette Definition A

Creating a Vignette Definition basically comes down to filling in the Vignette Definition table. Below is an
example Vignette Definition table with a specific Vignette for a Web-Based Retail Provider described. The
Vignette Definition is meant to talk about what business issues are of concern for the application. Is the
application dealing with PII? Credit card (PCI-relevant) data? How bad is each of the 8 Technical Impacts
given what the application is doing for a business (in the business's operational context).

[Name Web-Based Retail Provider

j D retail-www

i Maturity |under-development

Domain |ecomm

:|mw |Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database

R v

CWRAF - Archetypes

Following is a list of the archetypes that are used in CWRAF.

Anti-Virus Program

Authentication Server

Teleworking - Remote Access Server, Teleworking - Web Mail

|BZB Communications |

Medical Billing

|Custom applications |

Web-Based Retail Provider, Online Banking, Medical Billing, SCADA Historian, Distributed Production Facility Management using SCADA

Database Web-based HMI, Employee Compensation
Developmedt State or Local Elections using eVoting via an Internet web application
Framework

Digital certificate

Distributed Control
System (DCS)

|Docu ment Processing |

Human Medical Devices, Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, State or Local Elections

Embedded Device

using eVoting via Direct Recording Election Machines., Weapon system sensor

Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via Direct Recording Election

Endpoint System

Machines.

Firewall

Web-Based Retail Provider, Medical Billing, Human Medical Devices, Distributed Production Facility Management using SCADA Web-based HMI,

Generakl-purpose 0S

State Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via an Internet web

application, Corporate Shareholder Internet voting

Infrastructure as a
Service (IaaS)

Internet i Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via an Internet web application
Communications

S2EE B Spong Financial Trading

frameworks

Laptop

Modem

State or Local Elections using eVoting via Direct Recording Election Machines.

Communications

N-tier distributed

Financial Trading

PDA

iPKI

Platform-as-a-Service
(Paas)

|Privacy management

Process Control
Systems

Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow Control, SCADA Historian,
Distributed Production Facility Management using SCADA Web-based HMI, Chemical Flow Control

Programmable Logic
Controller (PLC)

Proprietary Firmware

|State or Local Elections using eVoting via Direct Recording Election Machines.

Remote Terminal Unit
(RTU)

Removable Storage
Media

State or Local Elections using eVoting via Direct Recording Election Machines.

lRouter

SCADA

SOA-based web
service

Service-oriented
architecture

Social Networking, Electronic Dating

ISmartphone

[Human Medical Devices, First Responder

Software-as-a-Service
(Saas)

Transactional engine

Financial Trading, Online Banking

VPN

Virtualized 0OS

Web application

[Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via an Internet web application

Web browser

Web-Based Retail Provider, Online Banking, Medical Billing, Distributed Production Facility Management using SCADA Web-based HMI, State
Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via an Internet web application,
Corporate Shareholder Internet voting, Social Networking, Electronic Dating, Employee Compensation, Teleworking - Remote Access Server,
Teleworking - Web Mail

Web browser plugin

Human Medical Devices, Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow

Web;dllent Control, SCADA Historian

Web proxy
Web-Based Retail Provider, Online Banking, Medical Billing, Regional Electricity Flow Control, SCADA Historian, Distributed Production Facility

Web sdivas Management using SCADA Web-based HMI, State Election Administration using remote Internet voting via absentee ballot, Corporate
Shareholder Internet voting, Social Networking, Electronic Dating, Employee Compensation, Teleworking - Remote Access Server, Teleworking -
Web Mail

Web service !Distributed Production Facility Management using SCADA Web-based HMI

—

NIST

Software Assurance Metrics
and Tool Evaluation (SAMATE)

' SAFECoade

~H rum xcellence in Cod
@@ Driving Security and Integrity

Vulnerability | AR P A

_I_I_JS_I
8—-0—08

Analysis of Securely Taking On New
Energy Delivery Executable Software of
Control Systems Uncertain Provenance

(STONESOUP)

GNL
1S this
Id ho National SOUP
Laboratory
safe?

Clu

©2012 MITRE

ISO/IEC JTC 1/SC 27/WG 3, NWP
Refining Software Vulnerability Analysis Under ISO/IEC 15049

and ISO/IEC 18045

eSPARL <
~
v

=TT [
g%ej L.(/ L'_/ |.q - Iﬂ%ﬁ
Moo, o < ‘HJ:':T:

2
o
of o

- The way how thel CAPEC and related CWE taxonomiesfare to be used by
the developer, which needs to consider and provide sutficient and effective

mitigation to all applicable attacks and weaknesses.

- The way how the CAPEC and related CWE taxonomies are to be used by
the evaluator, which needs to consider all the applicable attack patterns and
be able to exploit all the related software weaknesses while performing the
subsequent AVA_VAN activities.

- How incomplete entries from the CAPEC are to be addressed during an

evaluation.

- How to incorporate to the evaluation attacks and weaknesses not included
in the CAPEC.

©2012 MITRE

What Are the System Security Risks?

Known
Threat
Actors

Attack
Patterns
(CAPECSs)

9.
X

T Attack

Weaknesses Controls* Technical Operational
(CWEs) System & Impacts Impacts
System Security
B e
T Item -1 _d Impact
I
I
E'-"'-"". -9
i
*19 Item ¢

—

Weakness ¢=+¢ ltem ¢

* Controls include architecture choices, design choices, added security

functions, activities & processes, physical decomposition choices, code
assessments, design reviews, dynamic testing, and pen testing

©2012 MITRE

w Common Weakness Enumeration py——
‘ommunity-Developed Dictionary of Software Weakness Types 7
New C CU/RAF

1) o
\"."} N- a m p v | Engineering for Attacks ey v
Development View Engineering for Attacks
Research View Attacker Weaknesses Identified By Attack Patterns Creating Your Program U.S Federal Reporting Software Quality
Reports Requirements & Responsibilities Prioritizing Weaknesses
I n th e Manageable Steps
Sources The greatest impact in software assurance activities come from thinking about how an attacker will Pocket Guides
Process try to gain access, control, or influence over your system once it is operational. For all too long, the Staying Informed

Documents thinking about this has been relegated to the “Security Experts” but they aren’t the ones that can
it actually do anything about it in a timely and efficient manner—you are—those that design,
architect, and develop the software.

Finding More Information

Discussion List
CWE Newsletter

CWE Community

SwA On-Ramp
- e Considering the Attacker e oblise
S e Ct I o n Of th e m By considering the attacker and using the collection of attack patterns available in the Common
P Attack Pattern Enumeration and Classification (CAPEC™) initiative, we can help identify
L CWRAF opportunities for increasing the robustness and defendability of our software. CAPEC is a list of the
We b s Ite cwe/sansTop2s | patterns of the attacks that can be used to exploit the weaknesses in systems. CAPEC entries list
the CWE entries that they can be effective against and CWE entries likewise list the CAPEC entries
z““”ir_"’““g‘? that they are susceptible to.
Representation
Engineering for Attacks t
Known Attack Patterns Weaknesses Controls* Technical Operational
A o ol Threat (CAPECs) {CWEs) | r—y—— Impacts Impacts
U.S Federal Reporting Requirements & Respon Actors &

The U.S. Federal Government, under ty€Federal Information Security Management Act (FISMA),
must now report some specifics about (Meiggoftware assurance actw:tles The FY2012 CIO FISMA

Reporting Metrics issued by DHS's Federal Network
utilize CWE, CAPEC and CWSS to discuss what was done to search for weaknesses in non-COTS
before release. The document also asks for a description of the methods used to assess for these
issues, offering several possibilities. Specifically:

oY) Wezkness #-rg It
¢ Web scanners for web- based applications prare o

¢ Static Code Analysis Tools : &5 i s poen SEEE——G e e
; . Contfols ludi arch| e design ch :dded 2 y ¢ . & pi :
¢ Manual code reviews (especially for weaknesses not covered by the automated tools) [physical decomp hoices, code design , dynamic testing, and pen testing
’ Dynamlc. Code Analysss Tools and as shown in the figure above, you want to conduct a software assurance
¢ PEN testing for attack types not covered by the automated tools o identify the applicable attack patterns from CAPEC that the "system" could be

and the weaknesses in CWE that those attack patterns are effective against and

provide the results and a documented set of recommended approaches to eliminating and
mitigating the CWEs through archltecture and design chmces |nclu5|on of securlty controls and

I ntrOd u ces DO D ,s features as well as 3ssessm
Program Protection
Plan (PPP) https:llcwe.mitre.orglcommunitylswa/attackgehtml

Software Assurance Ecosystem: The Formal Framework

The value of formalization extends beyond software systems to include related software system process, people and

documentation

ﬁProcess Docs & Artifactsﬁ

I@uirementleesign Docs & Artifacti

-

Process, People & Documentation

Evaluation Environment
= Some point tools to assist evaluators but mainly manual work

= Claims in Formal SBVR vocabulary
= Evidence in Formal SBVR vocabulary
= Large scope requires large effort

‘U}

Software System / Architecture Evaluation

= Many integrated & highly automated tools to assist evaluators
= Claims and Evidence in Formal vocabulary
= Combination of tools and ISO/OMG standards
= Standardized SW System Representation In KDM
= Large scope capable (system of systems)
= Iterative extraction and analysis for rules

T Erdware EnvironmeE
@tware System Artifac@

~

documentation
Evidence

ﬁ
—u
Formalized

Specifications

Software

system

Technical
Evidence

~
_
Executable

Specifications

Process, People,/

Reports
Risk Analysis, etc)

*

Claims, Arguments and
Evidence Repository

SACM
(Structured Assurance Case

- Formalized M%BW‘\',%Qabulary

- Automated verification of
claims against evidence

- Highly automated and
sophisticated risk assessments
using transitive inter-evidence
point relationships

THE UNIVERS]TYW

delard KDM
_ RN

7 THE UNIVERSITY OF TOKYO

J Protection Profiles

EA Controlﬁ ﬁWE CAPECﬁ

©2012 MIT@S

Summary...

e An adversary's methods of attack and the system’s
susceptibility to the attacks that endanger the mission
are those to focus mitigations/security capabilities
against.

e Clear articulation of the threat actors attacks, the
weaknesses they can exploit, the mission impacts,
and their mitigations through all of the SSE and SE
methods, needs to be iteratively worked as a

community from the point of system concept through
sustainment

CAPEC - CWE - CWRAF/CWSS
Assurance Case — Structured Assurance Case Metamodel

©2012 9RE

What Should an App “have” to be in a DoD App Store
e Statement of the SDK used

e Statement of the permissions/capabilities/intents needed
by the app

e Statements about the PPP-related facts:

- What CVEs - discuss the commercial and open source
usage in the app and what is being done to manage
vulnerabilities in those items

- What CWEs - discuss the weaknesses that were the
focus of static and manual assessments and the tools
used

- What CAPECs - discuss the attack patterns used to
review the design and architecture of the app and
describe the attack patterns used to derive test cases for
assessing the app

©2012 MITRE

Architecting Security with Information
Standards for COls

Nal>

of malicio

Vulnerability Configuration Threat
Management Management Management Management
4.

Incident
Management

System
Certification

Intrusion
Detection

System
Development

pass
cracking

Change
Management

Management Management Reporting

1980’s 1990’s 2000’s 2010’s

Making
Security
Measurable

\\\”n
&
= ©2012 MITRE

Threat
Management

Vulnerability

Configuration
Management

Management

Asset

Management

Incident
Management

System

Certfification Intrusion

System
Detection

Development

Trust
Management

Central

Change
Reporting

Management

Identity
Managenment

S
SR

Making
Security
Measurable®

N
)
N
\\\\

Assessment
of System
Development,
Integration, &
Sustainment
Activities
and
Certification &
Accreditation

Development &
Sustainment
Security
Management
Processes

Asset

Inventory

Configuration
Guidance
Analysis

Vulnerability

Analysis

Threat
Analysis

[

Intrusion
Detection

Incident
Management

—

Operations Security Management Processes

INTERNET I L
| Router | Web Application Database
Servers Servers Systems
DMz
- . eo—1 1M1 1 [INTRANET
1 1 1 1 I 1 | 1

DNS Mail Web Desktop Desktop Desktop Desktop
Server Server Servers Systems Systems Systems Systems

Operational Enterprise Networks

Trust

Management

Enterprise IT

Change Management

Identity
Management

Centralized Reporting

Enterprise IT Asset Management

Assessment
of System
Development,
Integration, &
Sustainment
Activities
and
Certification &
Accreditation

CWE/CAPEC/
CWSS/MAEC/
OVAL/OCIL/
XCCDF/CCE/
CPE/ARF/
SWID/SAFES/
SACM

Development &
Sustainment
Security
Management
Processes

Asset

I Guidance
nventory

Analysis

Configuration

CCE/

Vulnerability

Analysis

CVE/CWE!/

Threat
Analysis

Intrusion

Detection

CVE/CWE/

Incident
Management

—

CVE/CWE/

OVAL/OCIL/ CVSS/CCE/ CVSS/CCE/ CVSS/CCE/
OVAL/ XCCDF/ OVAL/OCIL/ OVAL/OCILS OVAL/OCIL/ARF/
ARF CPE/SWID/ XCCDF/CPE/ XCCDF/CPE/ XCCDF/CPE/
CCSS/ARF CWSS/SWID CAPEC/MAEC/ CAPEC/MAEC/
CybOX/SWID CEE/CybOX/SWID
Operations Security Management Processes
INTERNET I ot
| Router | Web Application Database
Servers Servers Systems
DMz
. rmewern B 111 1 I INTRANET
1 1 1 L I 1 | 1
DNS Mail Web Desktop Desktop Desktop Desktop
Server Server Servers Systems Systems Systems Systems
CVE/CWE/
CVSS/CCE/
CCSS/OVAL/ : .
XCCOFIOCIL) Operational Enterprise Networks
CPE/CAPEC/
MAEC/CWSS/ CVE/CWE/CVSS/CCE/CCSS/OVAL/OCIL/
CEE/ARF/ XCCDF/CPE/CAPEC/MAEC/CWSS/CEE/
SWID/CybOX ARF/SWID/CybOX

Trust

Management

Enterprise IT

Change Management

Identity

Management

Centralized Reporting

Enterprise IT Asset Management

Cyber Ecosystem Standardization Efforts

What IT systems do | have in my enterprise? * CPE (Platforms)

What known vulnerabilities do | need to worry about? CVE (Vulnerabilities)
What vulnerabilities do | need to worry about right now? CVSS (Scoring System)
How can | configure my systems more securely? CCE (Configurations)
How do | define a policy of secure configurations? XCCDF (Configuration Checklists)
How can | be sure my systems conform to policy? OVAL (Assessment Language)
How can | be sure the operation of my systems conforms to policy? OCIL (Interactive Language)
What weaknesses in my software could be CWE (Weaknesses)
exploited?
What attacks can exploit which weaknesses? CAPEC (Attack Patterns)
How can we recognize malware & share that info? MAEC (Malware Attributes)

What observable behavior might put my enterprise at risk? CybOX (Cyber Observables)

What events should be logged, and how? CEE (Events)

How can | aggregate assessment results? ¢ ARF (Assessment Results)

Standardization Efforts leveraged by the
Security Content Automation Protocol (SCAP

What IT systems do | have in my enterprise? CPE (Platforms)

What known vulnerabilities do | need to worry about? CVE (Vulnerabilities)

What vulnerabilities do | need to worry about right now? CVSS (Scoring System)
How can | configure my systems more securely? CCE (Configurations)
How do | define a policy of secure configurations? XCCDF (Configuration Checklists)

How can | be sure my systems conform to policy? OVAL (Assessment Language)

How can | be sure the operation of my systems conforms to policy? OCIL (Interactive Language)

What weaknesses in my software could be

exploited? CWE (Weaknesses)

What attacks can exploit which weaknesses? * CAPEC (Attack Patterns)

How can we recognize malware & share that info? ¢ MAEC (Malware Attributes)

What observable behavior might put my enterprise at risk? | Y o) @(aY T 6] sz ()

What events should be logged, and how? e CEE (Events)

How can | aggregate assessment results? ¢ ARF (Assessment Results)

Standardization Efforts focused on mitigating
risks and enabling faster incident response

What IT systems do | have in my enterprise? * CPE (Platforms)

What known vulnerabilities do | need to worry about? ER«Y HITIE A 0]

What vulnerabilities do | need to worry about right now? RGN I T EI1 1)
How can | configure my systems more securely? * CCE (Configurations)
How do | define a policy of secure configurations? e XCCDF (Configuration Checklists)

How can | be sure my systems conform to policy? | KRN0 VR ELETEES)

How can | be sure the operation of my systems conforms to policy? OCIL (Interactive Language)

What weaknesses in my software could be

exploited? CWE (Weaknesses)

What attacks can exploit which weaknesses? CAPEC (Attack Patterns)

How can we recognize malware & share that info? MAEC (Malware Attributes)

What observable behavior might put my enterprise at risk? CybOX (Cyber Observables)

What events should be logged, and how? CEE (Events)

How can | aggregate assessment results? ¢ ARF (Assessment Results)

Assessment
of System
Development,
Integration, &
Sustainment
Activities
and
Certification &
Accreditation

CWEICAPEC/
CWSS/MAEC/
OVAL/OCIL/
XCCDF/CCE/
CPE/ARF/SWID/
SAFES/SACM

Development &
Sustainment
Security
Management
Processes

4 4 f
Configuration -
Asset Gui% i Vulnerability Threat Intrusion Incident
Inventory Analysis Analysis Analysis Detection Management
CCE/ CVE/CWE/ CVE/CWE! CVE/CWE/ —)
SWID/ OVAL/OCI CVSS/CCE/ CVSS/CCE/ CVSS/CCE/
OVAL/ XCCDF/ OVAL/OCIL/ OVAL/OCIL/ OVAL/OCIL/ARF/
ARF CPE/SWID/ XCCDF/CPE/ XCCDF/CPE/ XCCDFICPE/
CCSS/ARF CWSS/SWID CAPEC/MAEC/ CAPEC/MAEC/
CybOX/SWID CEE/CybOX/SWID
Operations Security Management Processes
INTERNET - -
Router Web Application Database
Servers Servers Systems
DMz
- [Firowan il (111 111 'NTRA';‘EI
1 1 1 1 | 1 1 1 1
DNS Mail Web Desktop Desktop Desktop Desktop
Server Server Servers Systems Systems Systems Systems
CVE/CWE/
CVSS/CCE/
CCSS/OVAL/ .]
XCCDF/OCIL/ Operational Enterprise Networks
CPE/CAPEC/
MAEC/CWSS/ CVE/CWE/CVSS/CCE/CCSS/OVAL/OCIL/
CEE/ARF/ XCCDF/CPE/CAPEC/MAEC/CWSS/CEE/
SWID/CybOX

ARF/SWID/CybOX

Enterprise IT

Change Management

Identity

Management

Centralized Reporting

Enterprise IT Asset Management

Mitigating Risk Exposures |

Responding to Security Threats

OVAL/XCCDF/
OCIL/CCE/
CCSS/CPE/
SWID/ARF

System &
Software
Assurance
Guidance/
Requirements

CWEICAPEC/
SBVRICWSS/
MAEC

Asset Configuration Vulnerability Threat Indicator Incident
Definition Guidance Alert Alert Sharing Report
T
CPE/SWID/OVAL XCCDF/OVAL/ CVE/CWE/ CVE/CWE/ I0DEF, CVE, CYBEX, CWE,
CCE/CCSS/OCIL OVAL/CVSS/ CVSS/CAPEC/ CPE, MAEC, IODEF, OVAL, CVE
CVRF MAEC/CybOX CEE, CybOX, CPE, CVSS, MAEC,
~ RID, RID-T - CEE, CWSS,
CybOX, RID, RID-T
i A i A i "
i
4 a
Configuration -
Asset Gui?:l I~ Vulnerability Threat Incident
Invento . Analysis Analysis
ry Analysis y Yy Management
CCE/ CVE/CWE/ CVEICWE/ CVE/CWE/ _)
SWID/ OVAL/OCIL/ CVSS/CCE/ CVSS/CCE/ CVSS/CCE/
OVAL/ XCCDF/ QOVAL/OCIL/ OVAL/OCIL/ OVAL/OCIL/ARF/
ARF CPE/SWID/ XCCDF/CPE/ XCCDF/CPE/ XCCDFICPE/
CCSS/ARF CWSS/SWID CAPEC/MAEC/ CAPEC/MAEC/
- CybOX/SWID CEE/CybOX/SWID
Operations Security Management Processes
Assessment
of System INTERNET e e
Development, mout
. outer Web Application Database
Igtegratlon’ & Servers Servers Systems
ustainment DMZ 1 | -
.. INTRANET
Activities - - I I I |I Firewall |I 111 Il | : 11 I 1111 I - -
and
Certification & DNS Mail Web Desktop Desktop Desktop Desktop
. Server Server Servers Systems Systems Systems Systems
Accreditation
CVE/CWE/
CVSS/CCE/
CWSSIMAEC/ CCSSIOVAL/ . .
OVAL/OCIL/ XCCDF/OCIL/ Operational Enterprise Networks
XCCDF/CCE/ CPE/CAPEC/
CPE/ARF/SWID/ MAEC/CWSS/ CVE/CWE/CVSS/CCE/CCSS/OVAL/OCIL/
SAFES/SACM CEE/ARF/ XCCDF/CPE/CAPEC/MAEC/CWSS/CEE/
SWID/CybOX ARF/SWID/CybOX

Development &

Sustainment Trust Enterprise IT Identity
Security Management Change Management Management
Management

Processes

Centralized Reporting

Enterprise IT Asset Management

Knowledge Repositories

OVAL/XCCDF/
OCIL/CCE/
CCSS/CPE/
SWID/ARF

- - -

System &
Software
Assurance
Guidance/
Requirements

Assessment
of System
Development,
Integration, &
Sustainment

CWEICAPEC/ Activities
SBVRICWSS/ and
MAEC Certification &

Accreditation

CWE/CAPEC/
CWSS/MAEC/
OVAL/OCIL/
XCCDF/CCE/
CPE/ARF/SWID/
SAFES/SACM

Development &
Sustainment
Security
Management
Processes

Asset Configuration Vulnerability
Definition Guidance Alert
CPE/SWID/OVAL o CVE/CWE/
XCCDF/OVAL/ OVAL/CVSS/

CCE/CCSS/OCIL

CVRF

i A A
4 4
Asset Connguration Vulnerability
Inventory Analysis Analysis

CE/

[+
OVAL/OCIL/

CVE/CWE/

Threat Indicator Incident
Alert Sharing Report
CVE/CWE/ IODEF, CVE, CYBEX, CWE,
CVSS/CAPEC/ CPE, MAEC, IODEF, OVAL, CVE
MAEC/CybOX CEE, CybOX, CPE, CVSS, MAEC,
- RID, RID-T . CEE, CWSS,
CybOX, RID, RID-T
[A L
k3
Threat Incident
Analysis Management

_

CVE/CWE/ CVE/CWE/

SWID/ CVSS/CCE/ CVSS/CCE/ CVSSI/CCE/
OVAL/ XCCDF/ OVAL/OCIL/ OVAL/OCIL/ OVAL/OCIL/ARF/
ARF CPE/SWID/ XCCDFICPE/ XCCDFICPE/ XCCDF/CPE/
CCSSIARF CWSS/SWID CAPEC/MAEC/ CAPEC/MAEC/
CybOX/SWID CEE/CybOX/SWID
Operations Security Management Processes
INTERNET
Router Web Application Database
Servers Servers Systems
DMZ » -
- MFrema —1I I [INTRANET
1 1 1 1 | 1 1 1 1
DNS Mail Web Desktop Desktop Desktop Desktop
Server Server Servers Systems Systems Systems Systems
CVE/CWE/
CVSS/CCE/
CCSS/OVAL/ . .
XCCDF/OCIL/ Operational Enterprise Networks
CPE/CAPEC/
MAEC/CWSS/ CVE/CWE/CVSS/CCE/CCSS/OVAL/OCIL/
CEE/ARF/ XCCDFICPE/CAPEC/MAEC/CWSS/CEE/
SWID/CybOX ARF/SWID/CybOX

Trust

Enterprise IT

Change Management

Management

Identity

Management

Centralized Reporting

Enterprise IT Asset Management

CwE& CAPEC

Contact Info

cwe@mitre.org
capec@mitre.org
cwss@mitre.org
msm@mitre.org

C./RAF

S

/4

Making
Securit
Measurable*

“ 77

%,
/)
l//

4%

%

Y, &<
U

CL/SS

MITRE

SOFTWARE ASSURANCE FORUM

Homeland BUILDING SECURITY IN
Security R —

ke

o e Pefense

Public/Private Collaboration Efforts for
Security Automation and Software
Supply Chain Risk Management

Next SWA Forum meets 18-20 Sep 2012 at MITRE, McLean, VA

